## Section: Research Program

### Lattices: algorithms and cryptology

We intend to strengthen our assessment of the cryptographic relevance of problems over lattices, and to broaden our studies in two main (complementary) directions: hardness foundations and advanced functionalities.

#### Hardness foundations

Recent advances in cryptography have broaden the scope of encryption functionalities (e.g., encryption schemes allowing to compute over encrypted data or to delegate partial decryption keys). While simple variants (e.g., identity-based encryption) are already practical, the more advanced ones still lack efficiency. Towards reaching practicality, we plan to investigate simpler constructions of the fundamental building blocks (e.g., pseudorandom functions) involved in these advanced protocols. We aim at simplifying known constructions based on standard hardness assumptions, but also at identifying new sources of hardness from which simple constructions that are naturally suited for the aforementioned advanced applications could be obtained (e.g., constructions that minimize critical complexity measures such as the depth of evaluation). Understanding the core source of hardness of today's standard hard algorithmic problems is an interesting direction as it could lead to new hardness assumptions (e.g., tweaked version of standard ones) from which we could derive much more efficient constructions. Furthermore, it could open the way to completely different constructions of advanced primitives based on new hardness assumptions.

#### Cryptanalysis

Lattice-based cryptography has come much closer to maturity in the recent past. In particular, NIST has started a standardization process for post-quantum cryptography, and lattice-based proposals are numerous and competitive. This dramatically increases the need for cryptanalysis: Do the underlying hard problems suffer from structural weaknesses? Are some of the problems used easy to solve, e.g., asymptotically? Are the chosen concrete parameters meaningful for concrete cryptanalysis? In particular, how secure would they be if all the known algorithms and implementations thereof were pushed to their limits? How would these concrete performances change in case (full-fledged) quantum computers get built?

On another front, the cryptographic functionalities reachable under lattice hardness assumptions seem to get closer to an intrinsic ceiling. For instance, to obtain cryptographic multilinear maps, functional encryption and indistinguishability obfuscation, new assumptions have been introduced. They often have a lattice flavour, but are far from standard. Assessing the validity of these assumptions will be one of our priorities in the mid-term.

#### Advanced cryptographic primitives

In the design of cryptographic schemes, we will pursue our investigations on functional encryption. Despite recent advances, efficient solutions are only available for restricted function families. Indeed, solutions for general functions are either way too inefficient for pratical use or they rely on uncertain security foundations like the existence of circuit obfuscators (or both). We will explore constructions based on well-studied hardness assumptions and which are closer to being usable in real-life applications. In the case of specific functionalities, we will aim at more efficient realizations satisfying stronger security notions.

Another direction we will explore is multi-party computation via a new approach exploiting the rich structure of class groups of quadratic fields. We already showed that such groups have a positive impact in this field by designing new efficient encryption switching protocols from the additively homomorphic encryption we introduced earlier. We want to go deeper in this direction that raises interesting questions such as how to design efficient zero-knowledge proofs for groups of unknown order, how to exploit their structure in the context of 2-party cryptography (such as two-party signing) or how to extend to the multi-party setting.

In the context of the PROMETHEUS H2020 project, we will keep seeking to develop new quantum-resistant privacy-preserving cryptographic primitives (group signatures, anonymous credentials, e-cash systems, etc). This includes the design of more efficient zero-knowledge proof systems that can interact with lattice-based cryptographic primitives.