Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

From properties to explanations

In many application domains, we can go beyond the proof that a program satisfies its specification. Abstractions can also offer new perspectives to understand how complex behaviors of programs emerge from simpler computation steps. Abstractions can be used to find compact and readable representations of sets of traces, causal relations, and even proofs. For instance, abstractions may decipher how the collective behaviors of agents emerge from the orchestration of their individual ones in distributed systems (such as consensus protocols, models of signaling pathways). Another application is the assistance for the diagnostic of alarms of a static analyzer.

Complex systems and software have often times intricate behaviors, leading to executions that are hard to understand for programmers and also difficult to reason about with static analyzers. Shared memory and distributed systems are notorious for being hard to reason about due to the interleaving of actions performed by different processes and the non-determinism of the network that might lose, corrupt, or duplicate messages. Reduction theorems, e.g., Lipton's theorem, have been proposed to facilitate reasoning about concurrency, typically transforming a system into one with a coarse-grained semantics that usually increases the atomic sections. We investigate reduction theorems for distributed systems and ways to compute the coarse-grained counter part of a system automatically. Compared with shared memory concurrency, automated methods to reason about distributed systems have been less investigated in the literature. We take a programming language approach based on high-level programming abstractions. We focus on partially-synchronous communication closed round-based models, introduced in the distributed algorithms community for its simpler proof arguments. The high-level language is compiled into a low-level (asynchronous) programming language. Conversely, systems defined under asynchronous programming paradigms are decompiled into the high-level programming abstractions. The correctness of the compilation/decompilation process is based on reduction theorems (in the spirit of Lipton and Elrad-Francez) that preserve safety and liveness properties.

In models of signaling pathways, collective behavior emerges from competition for common resources, separation of scales (time/concentration), non linear feedback loops, which are all consequences of mechanistic interactions between individual bio-molecules (e.g., proteins). While more and more details about mechanistic interactions are available in the literature, understanding the behavior of these models at the system level is far from easy. Causal analysis helps explaining how specific events of interest may occur. Model reduction techniques combine methods from different domains such as the analysis of information flow used in communication protocols, and tropicalization methods that comes from physics. The result is lower dimension systems that preserve the behavior of the initial system while focusing of the elements from which emerges the collective behavior of the system.

The abstraction of causal traces offer nice representation of scenarios that lead to expected or unexpected events. This is useful to understand the necessary steps in potential scenarios in signaling pathways; this is useful as well to understand the different steps of an intrusion in a protocol. Lastly, traces of computation of a static analyzer can themselves be abstracted, which provides assistance to classify true and false alarms. Abstracted traces are symbolic and compact representations of sets of counter-examples to the specification of a system which help one to either understand the origin of bugs, or to find that some information has been lost in the abstraction leading to false alarms.