Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping

Functional Magnetic Resonance Imaging (fMRI) has furthered brain mapping on perceptual, motor, as well as higher-level cognitive functions. However, to date, no data collection has systematically addressed the functional mapping of cognitive mechanisms at a fine spatial scale. The Individual Brain Charting (IBC) project stands for a high-resolution multi-task fMRI dataset that intends to provide the objective basis toward a comprehensive functional atlas of the human brain. The data refer to a cohort of 12 participants performing many different tasks. The large amount of task-fMRI data on the same subjects yields a precise mapping of the underlying functions, free from both inter-subject and inter-site variability. The present article gives a detailed description of the first release of the IBC dataset. It comprises a dozen of tasks, addressing both low- and high- level cognitive functions. This openly available dataset is thus intended to become a reference for cognitive brain mapping.

Figure 6. Overview of information conveyed by activation maps resulting from a first-level analysis. (top) Global effects of experimental subject condition, and phase-encoding direction. A per-voxel ANOVA breaks the variance of the set of brain maps into subject, experimental condition, and phase-encoding direction values. All maps are given in z-scale and thresholded at an FDR level of 0.05. (Bottom) Focusing on condition effect, the similarity between condition-related maps, averaged across subjects (left) is clearly related to the dissimilarity of the conditions, when these are characterized in terms of the Cognitive Atlas (right).

More information can be found in [25]