Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
E. Abbate, A. Iollo, G. Puppo.
An all-speed relaxation scheme for gases and compressible materials, in: Journal of Computational Physics, 2017, vol. 351, pp. 1-24. [ DOI : 10.1016/j.jcp.2017.08.052 ]
https://hal.inria.fr/hal-01586863
[2]
M. Bergmann, C. Bruneau, A. Iollo.
Enablers for robust POD models, in: Journal of Computational Physics, 2009, vol. 228, no 2, pp. 516–538.
[3]
M. Bergmann, J. Hovnanian, A. Iollo.
An accurate cartesian method for incompressible flows with moving boundaries, in: Communications in Computational Physics, 2014, vol. 15, no 5, pp. 1266–1290.
[4]
M. Bergmann, A. Iollo.
Modeling and simulation of fish-like swimming, in: Journal of Computational Physics, 2011, vol. 230, no 2, pp. 329 - 348.
[5]
M. Bergmann, A. Iollo.
Bioinspired swimming simulations, in: Journal of Computational Physics, 2016, vol. 323, pp. 310 - 321.
[6]
F. Bernard, A. Iollo, G. Puppo.
Accurate Asymptotic Preserving Boundary Conditions for Kinetic Equations on Cartesian Grids, in: Journal of Scientific Computing, 2015, 34 p.
[7]
A. Bouharguane, A. Iollo, L. Weynans.
Numerical solution of the Monge–Kantorovich problem by density lift-up continuation, in: ESAIM: Mathematical Modelling and Numerical Analysis, November 2015, vol. 49, no 6, 1577.
[8]
A. De Brauer, A. Iollo, T. Milcent.
A Cartesian Scheme for Compressible Multimaterial Models in 3D, in: Journal of Computational Physics, 2016, vol. 313, pp. 121-143.
[9]
F. Luddens, M. Bergmann, L. Weynans.
Enablers for high-order level set methods in fluid mechanics, in: International Journal for Numerical Methods in Fluids, December 2015, vol. 79, pp. 654-675.
[10]
T. Meuel, Y. L. Xiong, P. Fischer, C. Bruneau, M. Bessafi, H. Kellay.
Intensity of vortices: from soap bubbles to hurricanes, in: Scientific Reports, December 2013, vol. 3, pp. 3455 (1-7).
[11]
Y. L. Xiong, C. Bruneau, H. Kellay.
A numerical study of two dimensional flows past a bluff body for dilute polymer solutions, in: Journal of Non-Newtonian Fluid Mechanics, 2013, vol. 196, pp. 8-26.
Publications of the year

Doctoral Dissertations and Habilitation Theses

[12]
C. Taymans.
Solving Incompressible Navier-Stokes Equations on Octree grids : towards Application to Wind Turbine Blade Modelling, Université de Bordeaux, September 2018.
https://tel.archives-ouvertes.fr/tel-01952801
[13]
C. Taymans.
Solving Incompressible Navier-Stokes Equations on Octree Grids: Towards Application to Wind Turbine Blade Modelling, Université de Bordeaux, September 2018.
https://hal.archives-ouvertes.fr/tel-01934807
[14]
F. Tesser.
Parallel Solver for the Poisson Equation on a Hierarchy of Superimposed Meshes, under a Python Framework, Universite Bordeaux, September 2018.
https://hal.inria.fr/tel-01904493

Articles in International Peer-Reviewed Journals

[15]
M. Bergmann, A. Ferrero, A. Iollo, E. Lombardi, A. Scardigli, H. Telib.
A zonal Galerkin-free POD model for incompressible flows, in: Journal of Computational Physics, January 2018, vol. 352, pp. 301 - 325. [ DOI : 10.1016/j.jcp.2017.10.001 ]
https://hal.inria.fr/hal-01668546
[16]
F. Bernard, A. Iollo, S. Riffaud.
Reduced-order model for the BGK equation based on POD and optimal transport, in: Journal of Computational Physics, November 2018, vol. 373, pp. 545-570. [ DOI : 10.1016/j.jcp.2018.07.001 ]
https://hal.archives-ouvertes.fr/hal-01943540
[17]
A. Ferrero, A. Iollo, F. Larocca.
Global and local POD models for the prediction of compressible flows with DG methods, in: International Journal for Numerical Methods in Engineering, July 2018. [ DOI : 10.1002/nme.5927 ]
https://hal.inria.fr/hal-01908303
[18]
M. Jedouaa, C.-H. Bruneau, E. Maitre.
An efficient interface capturing method for a large collection of interacting bodies immersed in a fluid, in: Journal of Computational Physics, November 2018, vol. 378, pp. 143-177.
https://hal.archives-ouvertes.fr/hal-01236468
[19]
A. Raeli, M. Bergmann, A. Iollo.
A Finite-Difference Method for the Variable Coefficient Poisson Equation on Hierarchical Cartesian Meshes, in: Journal of Computational Physics, February 2018.
https://hal.inria.fr/hal-01927869
[20]
L. Weynans.
Super-Convergence in Maximum Norm of the Gradient for the Shortley–Weller Method, in: Journal of Scientific Computing, May 2018, vol. 75, no 2, pp. 625 - 637. [ DOI : 10.1007/s10915-017-0548-y ]
https://hal.archives-ouvertes.fr/hal-01896220

International Conferences with Proceedings

[21]
S. Perotto, M. G. Carlino, F. Ballarin.
Model reduction by separation of variables: a comparison between Hierarchical Model reduction and Proper Generalized Decomposition, in: ICOSAHOM 2018 - International Conference on Spectral and High-Order Methods is a Mathematics Conference, London, United Kingdom, July 2018.
https://hal.inria.fr/hal-01940263

Conferences without Proceedings

[22]
E. Abbate, A. Iollo, G. Puppo.
An All-Speed Relaxation Scheme for the Simulation of Multi-material Flows, in: SHARK-FV 2018 - 5th experimental Sharing Higher-order Advanced Research Know-how on Finite Volume, Minho, Portugal, May 2018.
https://hal.archives-ouvertes.fr/hal-01901218
[23]
E. Abbate, A. Iollo, G. Puppo.
Numerical simulation of weakly compressible multi-material flows, in: SIMAI 2018 - Bi-annual congress of the Italian Society of Applied and Industrial Mathematics, Rome, Italy, Italian Society of Applied and Industrial Mathematics, July 2018.
https://hal.archives-ouvertes.fr/hal-01901222

Internal Reports

[24]
B. Lambert, L. Weynans, M. Bergmann.
Local Lubrication Model for Spherical Particles within an Incompressible Navier-Stokes Flow, Inria Bordeaux, équipe MEMPHIS ; Université Bordeaux, March 2018, no RR-9093, pp. 1-34.
https://hal.inria.fr/hal-01585066
References in notes
[25]
P. Angot, C. Bruneau, P. Fabrie.
A penalization method to take into account obstacles in a incompressible flow, in: Numerische Mathematik, 1999, vol. 81, no 4, pp. 497-520.
[26]
S. Bagheri.
Koopman-mode decomposition of the cylinder wake, in: Journal of Fluid Mechanics, 2013.
[27]
P. Barton, D. Drikakis, E. Romenski, V. Titarev.
Exact and approximate solutions of Riemann problems in non-linear elasticity, in: Journal of Computational Physics, 2009, vol. 228, no 18, pp. 7046-7068.
[28]
M. Bergmann, C. Bruneau, A. Iollo.
Enablers for robust POD models, in: Journal of Computational Physics, 2009, vol. 228, no 2, pp. 516–538.
[29]
A. Bouharguane, A. Iollo, L. Weynans.
Numerical solution of the Monge-Kantorovich problem by density lift-up continuation, in: ESAIM: M2AN, 2015, vol. 49, no 6, pp. 1577-1592.
[30]
A. D. Brauer, A. Iollo, T. Milcent.
A Cartesian scheme for compressible multimaterial models in 3D, in: Journal of Computational Physics, 2016, vol. 313, pp. 121-143. [ DOI : 10.1016/j.jcp.2016.02.032 ]
http://www.sciencedirect.com/science/article/pii/S0021999116000966
[31]
B. Cantwell, D. Coles.
An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder, in: Journal of fluid mechanics, 1983, vol. 136, pp. 321–374.
[32]
L. Cordier, M. Bergmann.
Two typical applications of POD: coherent structures eduction and reduced order modelling, in: Lecture series 2002-04 on post-processing of experimental and numerical data, Von Kármán Institute for Fluid Dynamics, 2002.
[33]
S. Gavrilyuk, N. Favrie, R. Saurel.
Modelling wave dynamics of compressible elastic materials, in: Journal of Computational Physics, 2008, vol. 227, no 5, pp. 2941-2969.
[34]
S. Godunov.
Elements of continuum mechanics, Nauka Moscow, 1978.
[35]
X. Jin.
Construction d'une chaîne d'outils numériques pour la conception aérodynamique de pales d'éoliennes, Université de Bordeaux, 2014.
[36]
S. Jin, Z. Xin.
The relaxation schemes for systems of conservation laws in arbitrary space dimensions, in: Communications on pure and applied mathematics, 1995, vol. 48, no 3, pp. 235–276.
[37]
F. Luddens, M. Bergmann, L. Weynans.
Enablers for high-order level set methods in fluid mechanics, in: International Journal for Numerical Methods in Fluids, December 2015, vol. 79, pp. 654-675. [ DOI : 10.1002/fld.4070 ]
[38]
J. Lumley, A. Yaglom, V. Tatarski.
Atmospheric turbulence and wave propagation, in: The structure of inhomogeneous turbulence, AM Yaglom & VI Tatarski, 1967, pp. 166–178.
[39]
I. Mezić.
Spectral Properties of Dynamical Systems, Model Reduction and Decompositions, in: Nonlinear Dynamics, 2005, vol. 41, no 1. [ DOI : 10.1007/s11071-005-2824-x ]
[40]
G. Miller, P. Colella.
A Conservative Three-Dimensional Eulerian Method for Coupled Solid-Fluid Shock Capturing, in: Journal of Computational Physics, 2002, vol. 183, no 1, pp. 26-82.
[41]
R. Mittal, G. Iaccarino.
Immersed boundary methods, in: Annu. Rev. Fluid Mech., 2005, vol. 37, pp. 239-261.
[42]
P. J. Schmid.
Dynamic mode decomposition of numerical and experimental data, in: Journal of Fluid Mechanics, 008 2010, vol. 656, pp. 5-28. [ DOI : 10.1017/S0022112010001217 ]
[43]
J. A. Sethian.
Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, UK, 1999.
[44]
L. Sirovich.
Turbulence and the dynamics of coherent structures, in: Quarterly of Applied Mathematics, 1987, vol. XLV, no 3, pp. 561-590.
[45]
K. Taira, T. Colonius.
The immersed boundary method: a projection approach, in: Journal of Computational Physics, 2007, vol. 225, no 2, pp. 2118-2137.
[46]
C. Villani.
Topics in optimal transportation, 1st, American Mathematical Society, 2003.