Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

[1]
N. Bouzat.
Fine grain algorithms and numerical schemes for exascale simulations of turbulent plasmas, Université de strasbourg, December 2018.
https://tel.archives-ouvertes.fr/tel-01975275
[2]
A. Durocher.
Large scale dislocation dynamics simulation : performance and reliability on parallel and distributed architectures., Université de Bordeaux, 2018.
[3]
L. Poirel.
Algebraic domain decomposition methods for hybrid (direct/iterative) solvers, Université de Bordeaux, November 2018.

Articles in International Peer-Reviewed Journals

[4]
E. Agullo, P. Arbenz, L. Giraud, O. Schenk.
Guest editorial: Special issue on parallel matrix algorithms and applications (PMAA’16), in: Parallel Computing, May 2018, vol. 74, pp. 1 - 2. [ DOI : 10.1016/j.parco.2018.01.003 ]
https://hal.inria.fr/hal-01927721
[5]
E. Agullo, E. Darve, L. Giraud, Y. Harness.
Low-Rank Factorizations in Data Sparse Hierarchical Algorithms for Preconditioning Symmetric Positive Definite Matrices, in: SIAM Journal on Matrix Analysis and Applications, October 2018, vol. 39, no 4, pp. 1701-1725.
https://hal.inria.fr/hal-01940053
[6]
T. Cojean, A. Guermouche, A. Hugo, R. Namyst, P.-A. Wacrenier.
Resource aggregation for task-based Cholesky Factorization on top of modern architectures, in: Parallel Computing, October 2018, This paper is submitted for review to the Parallel Computing special issue for HCW and HeteroPar 16 workshops.
https://hal.inria.fr/hal-01957086
[7]
S. Cools, E. F. Yetkin, E. Agullo, L. Giraud, W. Vanroose.
Analyzing the Effect of Local Rounding Error Propagation on the Maximal Attainable Accuracy of the Pipelined Conjugate Gradient Method, in: SIAM Journal on Matrix Analysis and Applications, March 2018, vol. 39, no 1, pp. 426 - 450. [ DOI : 10.1137/17M1117872 ]
https://hal.inria.fr/hal-01753411
[8]
H. Jagode, A. Danalis, R. Hoque, M. Faverge, J. Dongarra.
Evaluation of Dataflow Programming Models for Electronic Structure Theory, in: Concurrency and Computation: Practice and Experience, 2018, 23 p.
https://hal.inria.fr/hal-01725804
[9]
G. Pichon, E. Darve, M. Faverge, P. Ramet, J. Roman.
Sparse supernodal solver using block low-rank compression: Design, performance and analysis, in: International Journal of Computational Science and Engineering, July 2018, vol. 27, pp. 255 - 270. [ DOI : 10.1016/J.JOCS.2018.06.007 ]
https://hal.inria.fr/hal-01824275

International Conferences with Proceedings

[10]
A. Falco, E. Agullo, L. Giraud, G. Sylvand.
Hierarchical Symbolic Factorization for Sparse Matrices, in: Sparse Days 2018, Toulouse, France, September 2018.
https://hal.inria.fr/hal-01999895

Conferences without Proceedings

[11]
A. Durocher, L. Dupuy, O. Coulaud.
Dislocation Dynamics Simulation : Large scale simulations with Numodis, in: Journées scientifiques de la DANS, Saclay, France, May 2018.
https://hal.archives-ouvertes.fr/hal-01893794
[12]
M. Faverge, G. Pichon, P. Ramet.
Exploiting Parameterized Task-graph in Sparse Direct Solvers, in: SIAM Conference on Computational Science and Engineering (CSE19), Spokane, United States, February 2019.
https://hal.inria.fr/hal-01956963
[13]
G. Pichon, E. Darve, M. Faverge, P. Ramet, J. Roman.
Supernodes ordering to enhance Block Low-Rank compression in sparse direct solvers, in: PMAA 2018 - 10th International Workshop on Parallel Matrix Algorithms and Applications, Zurich, Switzerland, June 2018.
https://hal.inria.fr/hal-01956960
[14]
G. Pichon, E. Darve, M. Faverge, P. Ramet, J. Roman.
Utilisation de la compression Block Low-Rank pour accélérer un solveur direct creux supernodal, in: COMPAS 2018 - Conférence d'informatique en Parallélisme, Architecture et Système, Toulouse, France, July 2018.
https://hal.inria.fr/hal-01956959
[15]
G. Pichon, E. Darve, M. Faverge, P. Ramet, J. Roman.
Block Low-rank Algebraic Clustering for Sparse Direct Solvers, in: SIAM Conference on Computational Science and Engineering (CSE19), Spokane, United States, February 2019.
https://hal.inria.fr/hal-01956962

Internal Reports

[16]
E. Agullo, S. Cools, E. Fatih-Yetkin, L. Giraud, W. Vanroose.
On soft errors in the Conjugate Gradient method: sensitivity and robust numerical detection, Inria Bordeaux Sud-Ouest, November 2018, no RR-9226.
https://hal.inria.fr/hal-01929738
[17]
E. Agullo, E. Darve, L. Giraud, Y. Harness.
Low-rank Factorizations in Data Sparse Hierarchical Algorithms for Preconditioning Symmetric Positive Definite Matrices, Inria Bordeaux Sud-Ouest, August 2018, no RR-9200.
https://hal.inria.fr/hal-01856399
[18]
E. Agullo, L. Giraud, S. Lanteri, G. Marait, A.-C. Orgerie, L. Poirel.
Energy analysis of a solver stack for frequency-domain electromagnetics, Inria Bordeaux Sud-Ouest, December 2018, no RR-9240.
https://hal.inria.fr/hal-01962629
[19]
P. Blanchard, P. Chaumeil, J.-M. Frigerio, F. Rimet, F. Salin, S. Thérond, O. Coulaud, A. Franc.
A geometric view of Biodiversity: scaling to metagenomics, Inria ; INRA, January 2018, no RR-9144, pp. 1-16, https://arxiv.org/abs/1803.02272.
https://hal.inria.fr/hal-01685711
[20]
A. Franc, P. Blanchard, O. Coulaud.
Nonlinear Mapping and Distance Geometry, Inria Bordeaux Sud-Ouest, September 2018, no RR-9210, 14 p, https://arxiv.org/abs/1810.08661.
https://hal.inria.fr/hal-01897104
[21]
O. Kaya, R. Kannan, G. Ballard.
Partitioning and Communication Strategies for Sparse Non-negative Matrix Factorization, Inria Bordeaux Sud-Ouest, July 2018, no RR-9198.
https://hal.inria.fr/hal-01849084
[22]
G. Pichon, E. Darve, M. Faverge, P. Ramet, J. Roman.
Supernodes ordering to enhance Block Low-Rank compression in sparse direct solvers, Inria Bordeaux Sud-Ouest, December 2018, no RR-9238, pp. 1-31.
https://hal.inria.fr/hal-01961675

Other Publications

[23]
G. Pichon, M. Faverge, P. Ramet, J. Roman.
Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX, October 2018, JCAD 2018 - Journées Calcul et Données.
https://hal.inria.fr/hal-01956928
References in notes
[24]
L. Giraud, S. Gratton, J. Langou.
Convergence in backward error of relaxed GMRES, in: SIAM J. Scientific Computing, 2007, vol. 29, no 2, pp. 710-728.
[25]
V. Simoncini, D. B. Szyld.
Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing, in: SIAM J. Scientific Computing, 2003, vol. 25, pp. 454-477.