Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Reduction of recruitment costs in preclinical AD trials. Validation of automatic pre-screening algorithm for brain amyloidosis.

Participants : Manon Ansart, Stéphane Epelbaum, Geoffroy Gagliardi, Olivier Colliot, Didier Dormont, Bruno Dubois, Harald Hampel, Stanley Durrleman [Correspondant] .

We propose a method for recruiting asymptomatic Amyloid positive individuals in clinical trials, using a two-step process. We first select during a pre-screening phase a subset of individuals which are more likely to be amyloid positive based on the automatic analysis of data acquired during routine clinical practice, before doing a confirmatory PET-scan to these selected individuals only. This method leads to an increased number of recruitments and to a reduced number of PET-scans, resulting in a decrease in overall recruitment costs. We validate our method on 3 different cohorts, and consider 5 different classification algorithms for the pre-screening phase. We show that the best results are obtained using solely cognitive, genetic and socio-demographic features, as the slight increased performance when using MRI or longitudinal data is balanced by the cost increase they induce. We show that the proposed method generalizes well when tested on an independent cohort, and that the characteristics of the selected set of individuals are identical to the characteristics of a population selected in a standard way. The proposed approach shows how Machine Learning can be used effectively in practice to optimize recruitment costs in clinical trials.

More details in [3].