Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

Model building

Defining an optimal strategy for model building is far from easy because a model is the assembled product of numerous components that need to been evaluated and perhaps improved: the structural model, residual error model, covariate model, covariance model, etc.

How to proceed so as to obtain the best possible combination of these components? There is no magic recipe but an effort will be made to provide some qualitative and quantitative criteria in order to help the modeller for building his model.

The strategy to take will mainly depend on the time we can dedicate to building the model and the time required for running it. For relatively simple models for which parameter estimation is fast, it is possible to fit many models and compare them. This can also be done if we have powerful computing facilities available (e.g., a cluster) allowing large numbers of simultaneous runs.

However, if we are working on a standard laptop or desktop computer, model building is a sequential process in which a new model is tested at each step. If the model is complex and requires significant computation time (e.g., when involving systems of ODEs), we are constrained to limit the number of models we can test in a reasonable time period. In this context, it also becomes important to carefully choose the tasks to run at each step.