Personnel
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

[1]
X. Antoine, C. Besse, R. Duboscq, V. Rispoli.
Acceleration of the imaginary time method for spectrally computing the stationary states of Gross-Pitaevskii equations, in: Computer Physics Communications, 2017, vol. 219, pp. 70-78.
https://hal.archives-ouvertes.fr/hal-01356227
[2]
X. Antoine, F. Hou, E. Lorin.
Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2018, forthcoming.
https://hal.archives-ouvertes.fr/hal-01431866
[3]
X. Antoine, A. Levitt, Q. Tang.
Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by the preconditioned nonlinear conjugate gradient method, in: Journal of Computational Physics, August 2017, vol. 343, pp. 92-109, https://arxiv.org/abs/1611.02045. [ DOI : 10.1016/j.jcp.2017.04.040 ]
https://hal.archives-ouvertes.fr/hal-01393094
[4]
X. Antoine, E. Lorin.
An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations, in: Numerische Mathematik, 2017, vol. 137, no 4, pp. 923-958, soumis, forthcoming.
https://hal.archives-ouvertes.fr/hal-01244513
[5]
X. Antoine, E. Lorin.
Computational performance of simple and efficient sequential and parallel Dirac equation solvers, in: Computer Physics Communications, 2017, vol. 220, pp. 150-172.
https://hal.archives-ouvertes.fr/hal-01496817
[6]
X. Antoine, E. Lorin, Q. Tang.
A Friendly Review of Absorbing Boundary Conditions and Perfectly Matched Layers for Classical and Relativistic Quantum Waves Equations, in: Molecular Physics, 2017, vol. 115, no 15-16, pp. 1861-1879.
https://hal.archives-ouvertes.fr/hal-01374183
[7]
M. Badra, T. Takahashi.
Feedback boundary stabilization of 2d fluid-structure interaction systems, in: Discrete and Continuous Dynamical Systems - Series A, 2017.
https://hal.archives-ouvertes.fr/hal-01370000
[8]
N. Burq, D. Dos Santos Ferreira, K. Krupchyk.
From semiclassical Strichartz estimates to uniform Lp resolvent estimates on compact manifolds, in: International Mathematical Research Notices, 2017, https://arxiv.org/abs/1507.02307.
https://hal.archives-ouvertes.fr/hal-01251701
[9]
L. Bălilescu, J. San Martín, T. Takahashi.
Fluid-structure interaction system with Coulomb's law, in: SIAM Journal on Mathematical Analysis, 2017.
https://hal.archives-ouvertes.fr/hal-01386574
[10]
L. Bălilescu, J. San Martín, T. Takahashi.
On the Navier–Stokes system with the Coulomb friction law boundary condition, in: Zeitschrift für Angewandte Mathematik und Physik, 2017.
https://hal.archives-ouvertes.fr/hal-01393709
[11]
T. Hishida, A. L. Silvestre, T. Takahashi.
A boundary control problem for the steady self-propelled motion of a rigid body in a Navier-Stokes fluid, in: Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 2017.
https://hal.archives-ouvertes.fr/hal-01205210
[12]
C. Lacave, T. Takahashi.
Small moving rigid body into a viscous incompressible fluid, in: Archive for Rational Mechanics and Analysis, 2017, vol. 223, no 3, pp. 1307–1335, https://arxiv.org/abs/1506.08964. [ DOI : 10.1007/s00205-016-1058-z ]
https://hal.archives-ouvertes.fr/hal-01169436
[13]
D. Maity, T. Takahashi, M. Tucsnak.
Analysis of a System Modelling The Motion of a Piston in a Viscous Gas, in: Journal of Mathematical Fluid Mechanics, 2017.
https://hal.archives-ouvertes.fr/hal-01285089
[14]
M. Oumoun, L. Maniar, J.-C. Vivalda.
On the stabilization of quadratic nonlinear systems, in: European Journal of Control, May 2017, vol. 35, no Supplement C, 6 p. [ DOI : 10.1016/j.ejcon.2017.03.001 ]
https://hal.inria.fr/hal-01590336
[15]
J. San Martin, E. L. Schwindt, T. Takahashi.
Reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid, in: Journal of Inverse and Ill-posed Problems, 2017.
https://hal.archives-ouvertes.fr/hal-01241112
[16]
T. Takahashi.
Boundary local null controllability of the Kuramoto-Sivashinsky equation, in: Mathematics of Control, Signals, and Systems, 2017.
https://hal.archives-ouvertes.fr/hal-01373201
[17]
Q. Tang, Y. Zhang, N. Mauser.
A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose-Einstein condensates, in: Computer Physics Communications, 2017, vol. 219, pp. 223-235, https://arxiv.org/abs/1609.09039. [ DOI : 10.1016/j.cpc.2017.05.022 ]
https://hal.archives-ouvertes.fr/hal-01377235

Other Publications

[18]
S. Ammar, J.-C. Vivalda, M. Massaoud.
Genericity of the strong observability for sampled, November 2017, working paper or preprint.
https://hal.inria.fr/hal-01630461
[19]
L. Baudouin, E. Crépeau, J. Valein.
Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback, November 2017, working paper or preprint.
https://hal.laas.fr/hal-01643321
[20]
N. Boussaid, M. Caponigro, T. Chambrion.
On the Ball–Marsden–Slemrod obstruction in bilinear control systems, June 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01537743
[21]
N. Boussaid, M. Caponigro, T. Chambrion.
Regular propagators of bilinear quantum systems, 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01016299
[22]
T. Chambrion, G. Millérioux.
Hybrid control for low-regular nonlinear systems: application to an embedded control for an electric vehicle, July 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01567396
[23]
A. Duca.
Construction of the control function for the global exact controllability and further estimates, October 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01520173
[24]
A. Duca.
Simultaneous global exact controllability in projection, November 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01481873
[25]
B. H. Haak, D. Maity, T. Takahashi, M. Tucsnak.
Mathematical Analysis of the Motion of a Rigid Body in a Compressible Navier-Stokes-Fourier Fluid, October 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01619647
[26]
J. Lohéac, T. Takahashi.
Controllability of low Reynolds numbers swimmers of ciliate type, July 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01569856
[27]
S. Micu, T. Takahashi.
Local controllability to stationary trajectories of a one-dimensional simplified model arising in turbulence, August 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01572317
[28]
A. Munnier, K. Ramdani.
Calderón cavities inverse problem as a shape-from-moments problem, 2017, working paper or preprint.
https://hal.inria.fr/hal-01503425
[29]
K. Ramdani, J. Valein, J.-C. Vivalda.
Adaptive observer for age-structured population with spatial diffusion, February 2017, working paper or preprint.
https://hal.inria.fr/hal-01469488
[30]
A. Roy, T. Takahashi.
Local null controllability of a rigid body moving into a boussinesq flow, August 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01572508
[31]
J.-F. Scheid, J. Sokolowski.
Shape optimization for a fluid-elasticity system, March 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01449478
References in notes
[32]
C. Alves, A. L. Silvestre, T. Takahashi, M. Tucsnak.
Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1632-1659.
[33]
X. Antoine, K. Ramdani, B. Thierry.
Wide Frequency Band Numerical Approaches for Multiple Scattering Problems by Disks, in: Journal of Algorithms & Computational Technologies, 2012, vol. 6, no 2, pp. 241–259.
[34]
X. Antoine, C. Geuzaine, K. Ramdani.
Computational Methods for Multiple Scattering at High Frequency with Applications to Periodic Structures Calculations, in: Wave Propagation in Periodic Media, Progress in Computational Physics, Vol. 1, Bentham, 2010, pp. 73-107.
[35]
D. Auroux, J. Blum.
A nudging-based data assimilation method : the Back and Forth Nudging (BFN) algorithm, in: Nonlin. Proc. Geophys., 2008, vol. 15, no 305-319.
[36]
M. I. Belishev, S. A. Ivanov.
Reconstruction of the parameters of a system of connected beams from dynamic boundary measurements, in: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, vol. 324, no Mat. Vopr. Teor. Rasprostr. Voln. 34, pp. 20–42, 262.
[37]
M. Bellassoued, D. Dos Santos Ferreira.
Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, in: Inverse Probl. Imaging, 2011, vol. 5, no 4, pp. 745–773.
http://dx.doi.org/10.3934/ipi.2011.5.745
[38]
M. Bellassoued, D. D. S. Ferreira.
Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, in: Inverse Problems, 2010, vol. 26, no 12, 125010, 30 p.
http://dx.doi.org/10.1088/0266-5611/26/12/125010
[39]
Y. Boubendir, X. Antoine, C. Geuzaine.
A Quasi-Optimal Non-Overlapping Domain Decomposition Algorithm for the Helmholtz Equation, in: Journal of Computational Physics, 2012, vol. 2, no 231, pp. 262-280.
[40]
M. Boulakia.
Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, in: J. Math. Pures Appl. (9), 2005, vol. 84, no 11, pp. 1515–1554.
http://dx.doi.org/10.1016/j.matpur.2005.08.004
[41]
M. Boulakia, S. Guerrero.
Regular solutions of a problem coupling a compressible fluid and an elastic structure, in: J. Math. Pures Appl. (9), 2010, vol. 94, no 4, pp. 341–365.
http://dx.doi.org/10.1016/j.matpur.2010.04.002
[42]
M. Boulakia, A. Osses.
Local null controllability of a two-dimensional fluid-structure interaction problem, in: ESAIM Control Optim. Calc. Var., 2008, vol. 14, no 1, pp. 1–42.
http://dx.doi.org/10.1051/cocv:2007031
[43]
M. Boulakia, E. Schwindt, T. Takahashi.
Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid, in: Interfaces Free Bound., 2012, vol. 14, no 3, pp. 273–306.
http://dx.doi.org/10.4171/IFB/282
[44]
G. Bruckner, M. Yamamoto.
Determination of point wave sources by pointwise observations: stability and reconstruction, in: Inverse Problems, 2000, vol. 16, no 3, pp. 723–748.
[45]
A. Chambolle, B. Desjardins, M. J. Esteban, C. Grandmont.
Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, in: J. Math. Fluid Mech., 2005, vol. 7, no 3, pp. 368–404.
http://dx.doi.org/10.1007/s00021-004-0121-y
[46]
C. Choi, G. Nakamura, K. Shirota.
Variational approach for identifying a coefficient of the wave equation, in: Cubo, 2007, vol. 9, no 2, pp. 81–101.
[47]
C. Conca, J. San Martín, M. Tucsnak.
Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, in: Comm. Partial Differential Equations, 2000, vol. 25, no 5-6, pp. 1019–1042.
http://dx.doi.org/10.1080/03605300008821540
[48]
D. Coutand, S. Shkoller.
Motion of an elastic solid inside an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2005, vol. 176, no 1, pp. 25–102.
http://dx.doi.org/10.1007/s00205-004-0340-7
[49]
D. Coutand, S. Shkoller.
The interaction between quasilinear elastodynamics and the Navier-Stokes equations, in: Arch. Ration. Mech. Anal., 2006, vol. 179, no 3, pp. 303–352.
http://dx.doi.org/10.1007/s00205-005-0385-2
[50]
B. Desjardins, M. J. Esteban.
On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, in: Comm. Partial Differential Equations, 2000, vol. 25, no 7-8, pp. 1399–1413.
http://dx.doi.org/10.1080/03605300008821553
[51]
B. Desjardins, M. J. Esteban.
Existence of weak solutions for the motion of rigid bodies in a viscous fluid, in: Arch. Ration. Mech. Anal., 1999, vol. 146, no 1, pp. 59–71.
http://dx.doi.org/10.1007/s002050050136
[52]
B. Desjardins, M. J. Esteban, C. Grandmont, P. Le Tallec.
Weak solutions for a fluid-elastic structure interaction model, in: Rev. Mat. Complut., 2001, vol. 14, no 2, pp. 523–538.
[53]
A. El Badia, T. Ha-Duong.
Determination of point wave sources by boundary measurements, in: Inverse Problems, 2001, vol. 17, no 4, pp. 1127–1139.
[54]
M. El Bouajaji, X. Antoine, C. Geuzaine.
Approximate Local Magnetic-to-Electric Surface Operators for Time-Harmonic Maxwell's Equations, in: Journal of Computational Physics, 2015, vol. 15, no 279, pp. 241-260.
[55]
M. El Bouajaji, B. Thierry, X. Antoine, C. Geuzaine.
A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations, in: Journal of Computational Physics, 2015, vol. 294, no 1, pp. 38-57. [ DOI : 10.1016/j.jcp.2015.03.041 ]
https://hal.archives-ouvertes.fr/hal-01095566
[56]
E. Feireisl.
On the motion of rigid bodies in a viscous compressible fluid, in: Arch. Ration. Mech. Anal., 2003, vol. 167, no 4, pp. 281–308.
http://dx.doi.org/10.1007/s00205-002-0242-5
[57]
E. Feireisl.
On the motion of rigid bodies in a viscous incompressible fluid, in: J. Evol. Equ., 2003, vol. 3, no 3, pp. 419–441, Dedicated to Philippe Bénilan.
http://dx.doi.org/10.1007/s00028-003-0110-1
[58]
E. Feireisl, M. Hillairet, Š. Nečasová.
On the motion of several rigid bodies in an incompressible non-Newtonian fluid, in: Nonlinearity, 2008, vol. 21, no 6, pp. 1349–1366.
http://dx.doi.org/10.1088/0951-7715/21/6/012
[59]
E. Fridman.
Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method, in: Automatica, 2013, vol. 49, no 7, pp. 2250 - 2260.
[60]
G. P. Galdi, A. L. Silvestre.
On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force, in: Indiana Univ. Math. J., 2009, vol. 58, no 6, pp. 2805–2842.
http://dx.doi.org/10.1512/iumj.2009.58.3758
[61]
O. Glass, F. Sueur.
The movement of a solid in an incompressible perfect fluid as a geodesic flow, in: Proc. Amer. Math. Soc., 2012, vol. 140, no 6, pp. 2155–2168.
http://dx.doi.org/10.1090/S0002-9939-2011-11219-X
[62]
C. Grandmont, Y. Maday.
Existence for an unsteady fluid-structure interaction problem, in: M2AN Math. Model. Numer. Anal., 2000, vol. 34, no 3, pp. 609–636.
http://dx.doi.org/10.1051/m2an:2000159
[63]
G. Haine.
Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator, in: Mathematics of Control, Signals, and Systems, 2014, vol. 26, no 3, pp. 435-462.
[64]
G. Haine, K. Ramdani.
Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations, in: Numer. Math., 2012, vol. 120, no 2, pp. 307-343.
[65]
J. Houot, A. Munnier.
On the motion and collisions of rigid bodies in an ideal fluid, in: Asymptot. Anal., 2008, vol. 56, no 3-4, pp. 125–158.
[66]
O. Y. Imanuvilov, T. Takahashi.
Exact controllability of a fluid-rigid body system, in: J. Math. Pures Appl. (9), 2007, vol. 87, no 4, pp. 408–437.
http://dx.doi.org/10.1016/j.matpur.2007.01.005
[67]
V. Isakov.
Inverse problems for partial differential equations, Applied Mathematical Sciences, Second, Springer, New York, 2006, vol. 127.
[68]
N. V. Judakov.
The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, in: Dinamika Splošn. Sredy, 1974, no Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, pp. 249–253, 255.
[69]
B. Kaltenbacher, A. Neubauer, O. Scherzer.
Iterative regularization methods for nonlinear ill-posed problems, Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008, vol. 6.
[70]
G. Legendre, T. Takahashi.
Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation, in: M2AN Math. Model. Numer. Anal., 2008, vol. 42, no 4, pp. 609–644.
http://dx.doi.org/10.1051/m2an:2008020
[71]
J. Lequeurre.
Existence of strong solutions to a fluid-structure system, in: SIAM J. Math. Anal., 2011, vol. 43, no 1, pp. 389–410.
http://dx.doi.org/10.1137/10078983X
[72]
D. Luenberger.
Observing the state of a linear system, in: IEEE Trans. Mil. Electron., 1964, vol. MIL-8, pp. 74-80.
[73]
P. Moireau, D. Chapelle, P. Le Tallec.
Joint state and parameter estimation for distributed mechanical systems, in: Computer Methods in Applied Mechanics and Engineering, 2008, vol. 197, pp. 659–677.
[74]
A. Munnier, B. Pinçon.
Locomotion of articulated bodies in an ideal fluid: 2D model with buoyancy, circulation and collisions, in: Math. Models Methods Appl. Sci., 2010, vol. 20, no 10, pp. 1899–1940.
http://dx.doi.org/10.1142/S0218202510004829
[75]
A. Munnier, K. Ramdani.
Conformal mapping for cavity inverse problem: an explicit reconstruction formula, in: Applicable Analysis, 2016. [ DOI : 10.1080/00036811.2016.1208816 ]
https://hal.inria.fr/hal-01196111
[76]
A. Munnier, E. Zuazua.
Large time behavior for a simplified N-dimensional model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2005, vol. 30, no 1-3, pp. 377–417.
http://dx.doi.org/10.1081/PDE-200050080
[77]
J. O'Reilly.
Observers for linear systems, Mathematics in Science and Engineering, Academic Press Inc., Orlando, FL, 1983, vol. 170.
[78]
J. Ortega, L. Rosier, T. Takahashi.
On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, vol. 24, no 1, pp. 139–165.
http://dx.doi.org/10.1016/j.anihpc.2005.12.004
[79]
K. Ramdani, M. Tucsnak, J. Valein.
Detectability and state estimation for linear age-structured population diffusion models, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2016, vol. 50, no 6, pp. 1731-1761. [ DOI : 10.1051/m2an/2016002 ]
https://hal.inria.fr/hal-01140166
[80]
K. Ramdani, M. Tucsnak, G. Weiss.
Recovering the initial state of an infinite-dimensional system using observers, in: Automatica, 2010, vol. 46, no 10, pp. 1616-1625.
[81]
J.-P. Raymond.
Feedback stabilization of a fluid-structure model, in: SIAM J. Control Optim., 2010, vol. 48, no 8, pp. 5398–5443.
http://dx.doi.org/10.1137/080744761
[82]
J. San Martín, J.-F. Scheid, L. Smaranda.
A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density, in: Numer. Math., 2012, vol. 122, no 2, pp. 341–382.
http://dx.doi.org/10.1007/s00211-012-0460-1
[83]
J. San Martín, J.-F. Scheid, L. Smaranda.
The Lagrange-Galerkin method for fluid-structure interaction problems, in: Boundary Value Problems., 2013, pp. 213–246.
[84]
J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.
Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system, in: SIAM J. Numer. Anal., 2005, vol. 43, no 4, pp. 1536–1571 (electronic).
http://dx.doi.org/10.1137/S0036142903438161
[85]
J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.
An initial and boundary value problem modeling of fish-like swimming, in: Arch. Ration. Mech. Anal., 2008, vol. 188, no 3, pp. 429–455.
http://dx.doi.org/10.1007/s00205-007-0092-2
[86]
J. San Martín, L. Smaranda, T. Takahashi.
Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time, in: J. Comput. Appl. Math., 2009, vol. 230, no 2, pp. 521–545.
http://dx.doi.org/10.1016/j.cam.2008.12.021
[87]
J. San Martín, V. Starovoitov, M. Tucsnak.
Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2002, vol. 161, no 2, pp. 113–147.
http://dx.doi.org/10.1007/s002050100172
[88]
D. Serre.
Chute libre d'un solide dans un fluide visqueux incompressible. Existence, in: Japan J. Appl. Math., 1987, vol. 4, no 1, pp. 99–110.
http://dx.doi.org/10.1007/BF03167757
[89]
P. Stefanov, G. Uhlmann.
Thermoacoustic tomography with variable sound speed, in: Inverse Problems, 2009, vol. 25, no 7, 16 p, 075011.
[90]
T. Takahashi.
Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, in: Adv. Differential Equations, 2003, vol. 8, no 12, pp. 1499–1532.
[91]
H. Trinh, T. Fernando.
Functional observers for dynamical systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 2012, vol. 420.
[92]
J. L. Vázquez, E. Zuazua.
Large time behavior for a simplified 1D model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2003, vol. 28, no 9-10, pp. 1705–1738.
http://dx.doi.org/10.1081/PDE-120024530
[93]
H. F. Weinberger.
On the steady fall of a body in a Navier-Stokes fluid, in: Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Providence, R. I., Amer. Math. Soc., 1973, pp. 421–439.