Personnel
Overall Objectives
Research Program
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
R. M. Amadio, Y. Regis-Gianas.
Certifying and reasoning about cost annotations of functional programs, in: Higher-Order and Symbolic Computation, January 2013.
https://hal.inria.fr/inria-00629473
[2]
Z. Ariola, H. Herbelin, A. Sabry.
A Type-Theoretic Foundation of Delimited Continuations, in: Higher Order and Symbolic Computation, 2007.
http://dx.doi.org/10.1007/s10990-007-9006-0
[3]
D. Baelde, A. Doumane, A. Saurin.
Infinitary proof theory : the multiplicative additive case , in: Proceedings of CSL 2016, September 2016.
https://hal.archives-ouvertes.fr/hal-01339037
[4]
C. Chenavier.
The lattice of reduction operators: applications to noncommutative Gröbner bases and homological algebra, Université paris Diderot, December 2016.
https://tel.archives-ouvertes.fr/tel-01415910
[5]
P.-L. Curien.
Operads, clones, and distributive laws, in: Operads and Universal Algebra : Proceedings of China-France Summer Conference, Tianjin, China, L. G. Chengming Bai, J.-L. Loday (editors), Nankai Series in Pure, Applied Mathematics and Theoretical Physics, Vol. 9, World Scientific, July 2010, pp. 25-50.
https://hal.archives-ouvertes.fr/hal-00697065
[6]
P.-L. Curien, R. Garner, M. Hofmann.
Revisiting the categorical interpretation of dependent type theory, in: Theoretical computer Science, 2014, vol. 546, pp. 99-119.
http://dx.doi.org/10.1007/s10990-007-9006-0
[7]
P.-L. Curien, H. Herbelin.
The duality of computation, in: Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP '00), Montreal, Canada, SIGPLAN Notices 35(9), ACM, September 18-21 2000, pp. 233–243. [ DOI : 10.1145/351240.351262 ]
http://hal.archives-ouvertes.fr/inria-00156377/en/
[8]
P.-L. Curien, H. Herbelin.
Abstract machines for dialogue games, in: Interactive models of computation and program behavior, Panoramas et Synthèses, Société Mathématique de France, 2009, pp. 231-275.
https://hal.archives-ouvertes.fr/hal-00155295
[9]
P. Dehornoy, Y. Guiraud.
Quadratic normalization in monoids, in: Internat. J. Algebra Comput., 2016, vol. 26, no 5, pp. 935–972.
https://doi.org/10.1142/S0218196716500399
[10]
S. Gaussent, Y. Guiraud, P. Malbos.
Coherent presentations of Artin monoids, in: Compositio Mathematica, 2015, vol. 151, no 5, pp. 957-998. [ DOI : 10.1112/S0010437X14007842 ]
https://hal.archives-ouvertes.fr/hal-00682233
[11]
T. Girka, D. Mentré, Y. Regis-Gianas.
Oracle-based Dierential Operational Semantics (long version), Université Paris Diderot / Sorbonne Paris Cité, October 2016.
https://hal.inria.fr/hal-01419860
[12]
Y. Guiraud, P. Malbos.
Higher-dimensional normalisation strategies for acyclicity, in: Advances in Mathematics, 2012, vol. 231, no 3-4, pp. 2294-2351. [ DOI : 10.1016/j.aim.2012.05.010 ]
https://hal.archives-ouvertes.fr/hal-00531242
[13]
Y. Guiraud, P. Malbos, S. Mimram.
A Homotopical Completion Procedure with Applications to Coherence of Monoids, in: RTA - 24th International Conference on Rewriting Techniques and Applications - 2013, Eindhoven, Netherlands, F. Van Raamsdonk (editor), Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, June 2013, vol. 21, pp. 223-238. [ DOI : 10.4230/LIPIcs.RTA.2013.223 ]
https://hal.inria.fr/hal-00818253
[14]
H. Herbelin.
On the Degeneracy of Sigma-Types in Presence of Computational Classical Logic, in: Proceedings of TLCA 2005, P. Urzyczyn (editor), Lecture Notes in Computer Science, Springer, 2005, vol. 3461, pp. 209–220.
[15]
H. Herbelin.
An intuitionistic logic that proves Markov's principle, in: Logic In Computer Science, Edinburgh, Royaume-Uni, IEEE Computer Society, 2010.
http://hal.inria.fr/inria-00481815/en/
[16]
H. Herbelin.
A Constructive Proof of Dependent Choice, Compatible with Classical Logic, in: LICS 2012 - 27th Annual ACM/IEEE Symposium on Logic in Computer Science, Dubrovnik, Croatia, Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, 25-28 June 2012, Dubrovnik, Croatia, IEEE Computer Society, June 2012, pp. 365-374.
https://hal.inria.fr/hal-00697240
[17]
G. Jaber, N. Tabareau, M. Sozeau.
Extending Type Theory with Forcing, in: LICS 2012 : Logic In Computer Science, Dubrovnik, Croatia, June 2012.
https://hal.archives-ouvertes.fr/hal-00685150
[18]
G. Munch-Maccagnoni.
Focalisation and Classical Realisability, in: Computer Science Logic '09, E. Grädel, R. Kahle (editors), Lecture Notes in Computer Science, Springer-Verlag, 2009, vol. 5771, pp. 409–423.
[19]
Y. Regis-Gianas, F. Pottier.
A Hoare Logic for Call-by-Value Functional Programs, in: Proceedings of the Ninth International Conference on Mathematics of Program Construction (MPC'08), Lecture Notes in Computer Science, Springer, July 2008, vol. 5133, pp. 305–335.
http://gallium.inria.fr/~fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz
[20]
A. Saurin.
Separation with Streams in the Λμ-calculus, in: Symposium on Logic in Computer Science (LICS 2005), Chicago, IL, USA, Proceedings, IEEE Computer Society, 26-29 June 2005, pp. 356-365.
[21]
M. Sozeau, N. Oury.
First-Class Type Classes, in: Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings, O. A. Mohamed, C. Muñoz, S. Tahar (editors), Lecture Notes in Computer Science, Springer, 2008, vol. 5170, pp. 278-293.
[22]
B. Ziliani, M. Sozeau.
A comprehensible guide to a new unifier for CIC including universe polymorphism and overloading, in: Journal of Functional Programming, 2017, vol. 27. [ DOI : 10.1017/S0956796817000028 ]
https://hal.inria.fr/hal-01671925
Publications of the year

Doctoral Dissertations and Habilitation Theses

[23]
Best Paper
A. Doumane.
On the infinitary proof theory of logics with fixed points, Université Paris 7 - Diderot, June 2017.
https://hal.archives-ouvertes.fr/tel-01676953
[24]
M. Lucas.
Cubical categories for homotopy and rewriting, Université Paris 7, Sorbonne Paris Cité, December 2017.
https://hal.archives-ouvertes.fr/tel-01668359
[25]
É. Miquey.
Classical realizability and side-effects, Université Sorbonne Paris Cité - Université Paris Diderot (Paris 7) ; Universidad de la República - Montevideo, Uruguay, November 2017.
https://hal.inria.fr/tel-01653733
[26]
J. Obradovic.
Cyclic operads: syntactic, algebraic and categorified aspects, Université Paris Diderot - Paris 7 - Sorbonne Paris Cité, September 2017.
https://hal.archives-ouvertes.fr/tel-01676983

Articles in International Peer-Reviewed Journals

[27]
J.-P. Bernardy, M. Boespflug, R. R. Newton, S. Peyton Jones, A. Spiwack.
Linear Haskell: practical linearity in a higher-order polymorphic language, in: Proceedings of the ACM on Programming Languages, December 2017, vol. 2, no POPL, pp. 1-29, https://arxiv.org/abs/1710.09756. [ DOI : 10.1145/3158093 ]
https://hal.archives-ouvertes.fr/hal-01673536
[28]
S. Blazy, P. Castéran, H. Herbelin.
L'Assistant de Preuve Coq Table des matières, in: Techniques de l'Ingenieur, August 2017.
https://hal.inria.fr/hal-01645486
[29]
C. Chenavier.
Reduction Operators and Completion of Rewriting Systems, in: Journal of Symbolic Computation, 2017, https://arxiv.org/abs/1605.00174, forthcoming.
https://hal.archives-ouvertes.fr/hal-01325907
[30]
P.-L. Curien, S. Mimram.
Coherent Presentations of Monoidal Categories, in: Logical Methods in Computer Science, September 2017, vol. 13, no 3, pp. 1-38, https://arxiv.org/abs/1705.03553. [ DOI : 10.23638/LMCS-13(3:31)2017 ]
https://hal.inria.fr/hal-01662524
[31]
F. Loulergue, W. Bousdira, J. Tesson.
Calculating Parallel Programs in Coq using List Homomorphisms, in: International Journal of Parallel Programming, 2017, vol. 45, no 2, pp. 300-319. [ DOI : 10.1007/s10766-016-0415-8 ]
https://hal.inria.fr/hal-01159182
[32]
M. Lucas.
A coherence theorem for pseudonatural transformations, in: Journal of Pure and Applied Algebra, 2017, vol. 221, no 5, pp. 1146-1217, https://arxiv.org/abs/1508.07807. [ DOI : 10.1016/j.jpaa.2016.09.005 ]
https://hal.archives-ouvertes.fr/hal-01191867
[33]
J. Obradovic, P.-L. Curien, J. Ivanovic.
Syntactic aspects of hypergraph polytopes, in: Journal of Homotopy and Related Structures, 2017, forthcoming.
https://hal.archives-ouvertes.fr/hal-01669490
[34]
B. Ziliani, M. Sozeau.
A comprehensible guide to a new unifier for CIC including universe polymorphism and overloading, in: Journal of Functional Programming, 2017, vol. 27. [ DOI : 10.1017/S0956796817000028 ]
https://hal.inria.fr/hal-01671925
[35]
D. de Rauglaudre.
Formal Proof of Banach-Tarski Paradox, in: Journal of Formalized Reasoning, October 2017, vol. 10, no 1, pp. 37-49. [ DOI : 10.6092/issn.1972-5787/6927 ]
https://hal.archives-ouvertes.fr/hal-01673378

International Conferences with Proceedings

[36]
A. Bauer, G. Jason, P. Lumsdaine, M. Shulman, M. Sozeau, B. Spitters.
The HoTT Library: A Formalization of Homotopy Type Theory in Coq, in: CPP'17, Paris, France, CPP'17, ACM, January 2017, 9 p. [ DOI : 10.1145/3018610.3018615 ]
https://hal.inria.fr/hal-01421212
[37]
R. Chen, J.-J. Lévy.
A Semi-automatic Proof of Strong connectivity, in: 9th Working Conference on Verified Software: Theories, Tools and Experiments (VSTTE), Heidelberg, Germany, July 2017.
https://hal.inria.fr/hal-01632947
[38]
Best Paper
A. Doumane.
Constructive completeness for the linear-time µ-calculus, in: Conference on Logic in Computer Science 2017, Reykjavik, Iceland, June 2017.
https://hal.archives-ouvertes.fr/hal-01430737
[39]
T. Girka, D. Mentré, Y. Régis-Gianas.
Verifiable Semantic Difference Languages, in: International Symposium on Principles and Practice of Declarative Programming, Namur, Belgium, October 2017. [ DOI : 10.1145/3131851.3131870 ]
https://hal.inria.fr/hal-01653283
[40]
É. Miquey.
A Classical Sequent Calculus with Dependent Types , in: 26th European Symposium on Programming, Uppsala, Sweden, April 2017.
https://hal.inria.fr/hal-01375977

National Conferences with Proceedings

[41]
R. Chen, J.-J. Lévy.
Une preuve formelle de l'algorithme de Tarjan-1972 pour trouver les composantes fortement connexes dans un graphe, in: JFLA 2017 - Vingt-huitièmes Journées Francophones des Langages Applicatifs, Gourette, France, Vingt-huitièmes Journées Francophones des Langages Applicatifs, January 2017.
https://hal.inria.fr/hal-01422215

Conferences without Proceedings

[42]
A. Anand, S. Boulier, N. Tabareau, M. Sozeau.
Typed Template Coq – Certified Meta-Programming in Coq, in: The Fourth International Workshop on Coq for Programming Languages, Los Angeles, CA, United States, January 2018.
https://hal.inria.fr/hal-01671948
[43]
T. Zimmermann, H. Herbelin.
Coq's Prolog and application to defining semi-automatic tactics, in: Type Theory Based Tools, Paris, France, January 2017.
https://hal.archives-ouvertes.fr/hal-01671994

Internal Reports

[44]
A. Timany, M. Sozeau.
Consistency of the Predicative Calculus of Cumulative Inductive Constructions (pCuIC), KU Leuven, Belgium ; Inria Paris, October 2017, no RR-9105, 30 p, Version 2 fixes some typos from version 1.
https://hal.inria.fr/hal-01615123

Other Publications

[45]
C. Chenavier.
A Lattice Formulation of the F 4 Completion Procedure, March 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01489200
[46]
C. Chenavier.
Syzygies among reduction operators, August 2017, https://arxiv.org/abs/1708.08709 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01578555
[47]
P.-L. Curien, J. Obradovic.
Categorified cyclic operads, January 2018, https://arxiv.org/abs/1706.06788 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01679682
[48]
Y. Guiraud, E. Hoffbeck, P. Malbos.
Convergent presentations and polygraphic resolutions of associative algebras, December 2017, 65 pages.
https://hal.archives-ouvertes.fr/hal-01006220
[49]
H. Herbelin, É. Miquey.
Normalization and continuation-passing-style interpretation of simply-typed call-by-need λ-calculus with control, July 2017, working paper or preprint.
https://hal.inria.fr/hal-01570987
[50]
N. Jeannerod, Y. Régis-Gianas, R. Treinen.
Having Fun With 31.521 Shell Scripts, April 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01513750
[51]
M. Lucas.
A cubical Squier's theorem, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01662132
[52]
M. Lucas.
Cubical (ω,p)-categories, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01662127
[53]
C. Mangin, M. Sozeau.
Equations reloaded, December 2017, working paper or preprint.
https://hal.inria.fr/hal-01671777
[54]
G. Manzonetto, A. Polonsky, A. Saurin, J. G. Simonsen.
The Fixed Point Property and a Technique to Harness Double Fixed Point Combinators , December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01672846
[55]
É. Miquey, H. Herbelin.
Realizability interpretation and normalization of typed call-by-need λ-calculus with control, October 2017, working paper or preprint.
https://hal.inria.fr/hal-01624839
[56]
É. Miquey.
A Classical Sequent Calculus with Dependent Types (Extended Version), December 2017, working paper or preprint.
https://hal.inria.fr/hal-01519929
[57]
N. Tabareau, É. Tanter, M. Sozeau.
Equivalences for Free!: Univalent Parametricity for Effective Transport, July 2017, working paper or preprint.
https://hal.inria.fr/hal-01559073
References in notes
[58]
F. A. Al-Agl, R. Brown, R. Steiner.
Multiple categories: the equivalence of a globular and a cubical approach, in: Adv. Math., 2002, vol. 170, no 1, pp. 71–118.
https://doi.org/10.1006/aima.2001.2069
[59]
D. J. Anick.
On the Homology of Associative Algebras, in: Trans. Amer. Math. Soc., 1986, vol. 296, no 2, pp. 641–659.
[60]
D. Ara, F. Métayer.
The Brown-Golasiński Model Structure on strict -groupoids revisited, in: Homology, Homotopy and Applications, 2011, vol. 13, no 1, pp. 121–142.
[61]
J. Baez, A. Crans.
Higher-dimensional algebra. VI. Lie 2-algebras, in: Theory Appl. Categ., 2004, vol. 12, pp. 492–538.
[62]
H. P. Barendregt.
The Lambda Calculus: Its Syntax and Semantics, North Holland, Amsterdam, 1984.
[63]
R. Berger.
Confluence and Koszulity, in: J. Algebra, 1998, vol. 201, no 1, pp. 243–283.
[64]
Y. Bertot, P. Castéran.
Interactive Theorem Proving and Program Development Coq'Art: The Calculus of Inductive Constructions, Springer, 2004.
[65]
G. Bonfante, Y. Guiraud.
Polygraphic Programs and Polynomial-Time Functions, in: Logical Methods in Computer Science, 2009, vol. 5, no 2, pp. 1–37.
[66]
S. Boulier, P.-M. Pédrot, N. Tabareau.
The next 700 syntactical models of type theory, in: Certified Programs and Proofs (CPP 2017), Paris, France, January 2017, pp. 182 - 194. [ DOI : 10.1145/3018610.3018620 ]
https://hal.inria.fr/hal-01445835
[67]
R. Brown, P. J. Higgins.
The equivalence of -groupoids and crossed complexes, in: Cahiers Topologie Géom. Différentielle, 1981, vol. 22, no 4, pp. 371–386.
[68]
R. Brown, P. J. Higgins.
The equivalence of ω-groupoids and cubical T-complexes, in: Cahiers Topologie Géom. Différentielle, 1981, vol. 22, no 4, pp. 349–370.
[69]
B. Buchberger.
Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal), Mathematical Institute, University of Innsbruck, Austria, 1965.
[70]
A. Burroni.
Higher-dimensional word problems with applications to equational logic, in: Theoretical Computer Science, jul 1993, vol. 115, no 1, pp. 43–62.
[71]
A. Chlipala.
Certified Programming with Dependent Types - A Pragmatic Introduction to the Coq Proof Assistant, MIT Press, 2013.
http://mitpress.mit.edu/books/certified-programming-dependent-types
[72]
A. Church.
A set of Postulates for the foundation of Logic, in: Annals of Mathematics, 1932, vol. 2, pp. 33, 346-366.
[73]
J. Cockx, D. Devriese, F. Piessens.
Pattern matching without K, in: Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden, September 1-3, 2014, 2014, pp. 257–268.
http://doi.acm.org/10.1145/2628136.2628139
[74]
T. Coquand.
Une théorie des Constructions, University Paris 7, January 1985.
[75]
T. Coquand, G. Huet.
Constructions : A Higher Order Proof System for Mechanizing Mathematics, in: EUROCAL'85, Linz, Lecture Notes in Computer Science, Springer Verlag, 1985, vol. 203.
[76]
T. Coquand, C. Paulin-Mohring.
Inductively defined types, in: Proceedings of Colog'88, P. Martin-Löf, G. Mints (editors), Lecture Notes in Computer Science, Springer Verlag, 1990, vol. 417.
[77]
H. B. Curry, R. Feys, W. Craig.
Combinatory Logic, North-Holland, 1958, vol. 1, §9E.
[78]
P. Dehornoy, Y. Lafont.
Homology of Gaussian groups, in: Ann. Inst. Fourier (Grenoble), 2003, vol. 53, no 2, pp. 489–540.
http://aif.cedram.org/item?id=AIF_2003__53_2_489_0
[79]
P. Deligne.
Action du groupe des tresses sur une catégorie, in: Invent. Math., 1997, vol. 128, no 1, pp. 159–175.
[80]
J.-C. Faugére.
A new efficient algorithm for computing Gröbner bases (F4), in: J. Pure Appl. Algebra, 1999, vol. 139, no 1-3, pp. 61–88, Effective methods in algebraic geometry (Saint-Malo, 1998).
https://doi.org/10.1016/S0022-4049(99)00005-5
[81]
M. Felleisen, D. P. Friedman, E. Kohlbecker, B. F. Duba.
Reasoning with continuations, in: First Symposium on Logic and Computer Science, 1986, pp. 131-141.
[82]
A. Filinski.
Representing Monads, in: Conf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL'94, Portland, OR, USA, ACM Press, 17-21 Jan 1994, pp. 446-457.
[83]
G. Gentzen.
Untersuchungen über das logische Schließen, in: Mathematische Zeitschrift, 1935, vol. 39, pp. 176–210,405–431.
[84]
J.-Y. Girard.
Une extension de l'interpretation de Gödel à l'analyse, et son application à l'élimination des coupures dans l'analyse et la théorie des types, in: Second Scandinavian Logic Symposium, J. Fenstad (editor), Studies in Logic and the Foundations of Mathematics, North Holland, 1971, no 63, pp. 63-92.
[85]
T. G. Griffin.
The Formulae-as-Types Notion of Control, in: Conf. Record 17th Annual ACM Symp. on Principles of Programming Languages, POPL '90, San Francisco, CA, USA, 17-19 Jan 1990, ACM Press, 1990, pp. 47–57.
[86]
Y. Guiraud.
Présentations d'opérades et systèmes de réécriture, Univ. Montpellier 2, 2004.
[87]
Y. Guiraud.
Termination Orders for 3-Dimensional Rewriting, in: Journal of Pure and Applied Algebra, 2006, vol. 207, no 2, pp. 341–371.
[88]
Y. Guiraud.
The Three Dimensions of Proofs, in: Annals of Pure and Applied Logic, 2006, vol. 141, no 1–2, pp. 266–295.
[89]
Y. Guiraud.
Two Polygraphic Presentations of Petri Nets, in: Theoretical Computer Science, 2006, vol. 360, no 1–3, pp. 124–146.
[90]
Y. Guiraud, E. Hoffbeck, P. Malbos.
Confluence of linear rewriting and homology of algebras, in: 3rd International Workshop on Confluence, Vienna, Austria, July 2014.
https://hal.archives-ouvertes.fr/hal-01105087
[91]
Y. Guiraud, P. Malbos.
Higher-dimensional categories with finite derivation type, in: Theory Appl. Categ., 2009, vol. 22, no 18, pp. 420-478.
[92]
Y. Guiraud, P. Malbos.
Identities among relations for higher-dimensional rewriting systems, in: Séminaires et Congrès, Société Mathématique de France, 2011, vol. 26, pp. 145-161.
[93]
Y. Guiraud, P. Malbos.
Coherence in monoidal track categories, in: Math. Structures Comput. Sci., 2012, vol. 22, no 6, pp. 931–969.
[94]
M. Hofmann, T. Streicher.
The groupoid interpretation of type theory, in: Twenty-five years of constructive type theory (Venice, 1995), Oxford Logic Guides, Oxford Univ. Press, New York, 1998, vol. 36, pp. 83–111.
[95]
W. A. Howard.
The formulae-as-types notion of constructions, in: to H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, 1980, Unpublished manuscript of 1969.
[96]
J.-L. Krivine.
A call-by-name lambda-calculus machine, in: Higher Order and Symbolic Computation, 2005.
[97]
J.-L. Krivine.
Un interpréteur du lambda-calcul, 1986, Unpublished.
[98]
Y. Lafont.
Towards an Algebraic Theory of Boolean Circuits, in: Journal of Pure and Applied Algebra, 2003, vol. 184, pp. 257-310.
[99]
Y. Lafont, F. Métayer, K. Worytkiewicz.
A Folk Model Structure on Omega-Cat, in: Advances in Mathematics, 2010, vol. 224, no 3, pp. 1183–1231.
[100]
P. Landin.
The mechanical evaluation of expressions, in: The Computer Journal, January 1964, vol. 6, no 4, pp. 308–320.
[101]
P. Landin.
A generalisation of jumps and labels, UNIVAC Systems Programming Research, August 1965, no ECS-LFCS-88-66, Reprinted in Higher Order and Symbolic Computation, 11(2), 1998.
[102]
G. Lee, B. Werner.
Proof-irrelevant model of CC with predicative induction and judgmental equality, in: Logical Methods in Computer Science, 2011, vol. 7, no 4.
[103]
P. Malbos.
Critères de finitude homologique pour la non convergence des systèmes de réécriture de termes, Univ. Montpellier 2, 2004.
[104]
P. Martin-Löf.
A theory of types, University of Stockholm, 1971, no 71-3.
[105]
M. Parigot.
Free Deduction: An Analysis of "Computations" in Classical Logic, in: Logic Programming, Second Russian Conference on Logic Programming, St. Petersburg, Russia, A. Voronkov (editor), Lecture Notes in Computer Science, Springer, September 11-16 1991, vol. 592, pp. 361-380.
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Parigot:Michel.html
[106]
S. B. Priddy.
Koszul resolutions, in: Trans. Amer. Math. Soc., 1970, vol. 152, pp. 39–60.
[107]
J. C. Reynolds.
Definitional interpreters for higher-order programming languages, in: ACM '72: Proceedings of the ACM annual conference, New York, NY, USA, ACM Press, 1972, pp. 717–740.
[108]
J. C. Reynolds.
Towards a theory of type structure, in: Symposium on Programming, B. Robinet (editor), Lecture Notes in Computer Science, Springer, 1974, vol. 19, pp. 408-423.
[109]
C. Squier, F. Otto, Y. Kobayashi.
A finiteness condition for rewriting systems, in: Theoret. Comput. Sci., 1994, vol. 131, no 2, pp. 271–294.
[110]
C. C. Squier.
Word problems and a homological finiteness condition for monoids, in: J. Pure Appl. Algebra, 1987, vol. 49, no 1-2, pp. 201–217.
[111]
R. Steiner.
Omega-categories and chain complexes, in: Homology Homotopy Appl., 2004, vol. 6, no 1, pp. 175–200.
http://projecteuclid.org/euclid.hha/1139839551
[112]
R. Street.
Limits Indexed by Category-Valued 2-Functors, in: Journal of Pure and Applied Algebra, 1976, vol. 8, pp. 149–181.
[113]
T. C. D. Team.
The Coq Proof Assistant, version 8.7.1, December 2017.
https://doi.org/10.5281/zenodo.1133970
[114]
N. de Bruijn.
AUTOMATH, a language for mathematics, Technological University Eindhoven, November 1968, no 66-WSK-05.