Personnel
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
M. Agueh, G. Carlier.
Barycenters in the Wasserstein space, in: SIAM J. Math. Anal., 2011, vol. 43, no 2, pp. 904–924.
[2]
J.-D. Benamou, Y. Brenier.
A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, in: Numer. Math., 2000, vol. 84, no 3, pp. 375–393.
http://dx.doi.org/10.1007/s002110050002
[3]
J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré.
Iterative Bregman Projections for Regularized Transportation Problems, in: SIAM Journal on Scientific Computing, 2015, vol. 37, no 2, pp. A1111-A1138. [ DOI : 10.1137/141000439 ]
http://hal.archives-ouvertes.fr/hal-01096124
[4]
J.-D. Benamou, F. Collino, J.-M. Mirebeau.
Monotone and Consistent discretization of the Monge-Ampere operator, September 2014, pubished in MAth of Comp.
https://hal.archives-ouvertes.fr/hal-01067540
[5]
M. Bruveris, F.-X. Vialard.
On Completeness of Groups of Diffeomorphisms, in: ArXiv e-prints, March 2014.
[6]
V. Duval, G. Peyré.
Exact Support Recovery for Sparse Spikes Deconvolution, in: Foundations of Computational Mathematics, 2014, pp. 1-41.
http://dx.doi.org/10.1007/s10208-014-9228-6
[7]
F. Gay-Balmaz, D. D. Holm, D. M. Meier, T. S. Ratiu, F.-X. Vialard.
Invariant Higher-Order Variational Problems, in: Communications in Mathematical Physics, January 2012, vol. 309, pp. 413-458.
http://dx.doi.org/10.1007/s00220-011-1313-y
[8]
P. Machado Manhães De Castro, Q. Mérigot, B. Thibert.
Intersection of paraboloids and application to Minkowski-type problems, in: Numerische Mathematik, November 2015. [ DOI : 10.1007/s00211-015-0780-z ]
https://hal.archives-ouvertes.fr/hal-00952720
[9]
Q. Mérigot.
A multiscale approach to optimal transport, in: Computer Graphics Forum, 2011, vol. 30, no 5, pp. 1583–1592.
Publications of the year

Articles in International Peer-Reviewed Journals

[10]
G. Carlier, V. Duval, G. Peyré, B. Schmitzer.
Convergence of Entropic Schemes for Optimal Transport and Gradient Flows, in: SIAM Journal on Mathematical Analysis, April 2017, vol. 49, no 2, https://arxiv.org/abs/1512.02783. [ DOI : 10.1137/15M1050264 ]
https://hal.archives-ouvertes.fr/hal-01246086
[11]
C. Dossal, V. Duval, C. Poon.
Sampling the Fourier transform along radial lines, in: SIAM Journal on Numerical Analysis, November 2017, vol. 55, no 6, https://arxiv.org/abs/1612.06752 . [ DOI : 10.1137/16M1108807 ]
https://hal.inria.fr/hal-01421265
[12]
V. Duval, G. Peyré.
Sparse Regularization on Thin Grids I: the LASSO, in: Inverse Problems, March 2017, vol. 33, no 5. [ DOI : 10.1088/1361-6420/aa5e12 ]
https://hal.archives-ouvertes.fr/hal-01135200
[13]
V. Duval, G. Peyré.
Sparse Spikes Super-resolution on Thin Grids II: the Continuous Basis Pursuit, in: Inverse Problems, August 2017, vol. 33, no 9. [ DOI : 10.1088/1361-6420/aa7fce ]
https://hal.archives-ouvertes.fr/hal-01389956
[14]
J. Liang, J. M. Fadili, G. Peyré.
Local Convergence Properties of Douglas–Rachford and Alternating Direction Method of Multipliers, in: Journal of Optimization Theory and Applications, March 2017, vol. 172, no 3, pp. 874-913. [ DOI : 10.1007/s10957-017-1061-z ]
https://hal.archives-ouvertes.fr/hal-01658848
[15]
I. Waldspurger.
Phase retrieval for wavelet transforms, in: IEEE Transactions on Information Theory, 2017.
https://hal.archives-ouvertes.fr/hal-01645088
[16]
I. Waldspurger.
Phase retrieval with random Gaussian sensing vectors by alternating projections, in: IEEE Transactions on Information Theory, 2017, forthcoming.
https://hal.archives-ouvertes.fr/hal-01645081

Invited Conferences

[17]
Y. De Castro, Y. Goude, G. Hébrail, J. Mei.
Recovering Multiple Nonnegative Time Series From a Few Temporal Aggregates, in: ICML 2017 - 34th International Conference on Machine Learning, Sydney, Australia, August 2017, pp. 1-9, https://arxiv.org/abs/1610.01492.
https://hal.inria.fr/hal-01686437

International Conferences with Proceedings

[18]
J. Feydy, B. CHARLIER, F.-X. Vialard, G. Peyré.
Optimal Transport for Diffeomorphic Registration, in: MICCAI 2017, Quebec, Canada, Proc. MICCAI 2017, September 2017, https://arxiv.org/abs/1706.05218.
https://hal.archives-ouvertes.fr/hal-01540455

Conferences without Proceedings

[19]
I. Waldspurger.
Exponential decay of scattering coefficients, in: SampTA 2017 - Sampling Theory and Applications, Tallinn, Estonia, July 2017.
https://hal.archives-ouvertes.fr/hal-01645078

Scientific Books (or Scientific Book chapters)

[20]
M. Bergounioux, J.-B. Caillau, T. Haberkorn, G. Peyré, C. Schnörr (editors)
Variational methods in imaging and geometric control, Radon Series on Comput. and Applied Math., de Gruyter, January 2017, no 18.
https://hal.archives-ouvertes.fr/hal-01315508

Other Publications

[21]
M. Agueh, G. Carlier, N. Igbida.
On the minimizing movement with the 1-Wasserstein distance, February 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01467979
[22]
R. Andreev.
Preconditioning the augmented Lagrangian method for instationary mean field games with diffusion, May 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01301282
[23]
J.-M. Azaïs, Y. De Castro, Y. Goude, G. Hébrail, J. Mei.
Nonnegative matrix factorization with side information for time series recovery and prediction, January 2018, https://arxiv.org/abs/1709.06320 - working paper or preprint.
https://hal.inria.fr/hal-01686429
[24]
J.-D. Benamou, G. Carlier, L. Nenna.
Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm, October 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01621311
[25]
J.-D. Benamou, V. Duval.
Minimal convex extensions and finite difference discretization of the quadratic Monge-Kantorovich problem, October 2017, https://arxiv.org/abs/1710.05594 - working paper or preprint.
https://hal.inria.fr/hal-01616842
[26]
J.-D. Benamou, T. Gallouët, F.-X. Vialard.
Second order models for optimal transport and cubic splines on the Wasserstein space, January 2018, https://arxiv.org/abs/1801.04144 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01682107
[27]
G. Carlier, C. Poon.
On the total variation Wasserstein gradient flow and the TV-JKO scheme, March 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01492343
[28]
P. Catala, V. Duval, G. Peyré.
A Low-Rank Approach to Off-The-Grid Sparse Deconvolution, December 2017, https://arxiv.org/abs/1712.08800 - working paper or preprint.
https://hal.inria.fr/hal-01672896
[29]
L. Chizat, G. Peyré, B. Schmitzer, F.-X. Vialard.
Scaling Algorithms for Unbalanced Transport Problems, January 2017, https://arxiv.org/abs/1607.05816 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01434914
[30]
Y. De Castro, J.-M. Azaïs, S. Mourareau.
Testing Gaussian Process with Applications to Super-Resolution, January 2018, https://arxiv.org/abs/1706.00679 - 34 pages, 5 figures; this new version essentially put more emphasis on the comparison between grid methods and "grid-less" methods.
https://hal.inria.fr/hal-01686434
[31]
Y. De Castro, F. Gamboa, D. Henrion, R. Hess, J.-B. Lasserre.
Approximate Optimal Designs for Multivariate Polynomial Regression, October 2017, To appear at Annals of Satistics.
https://hal.laas.fr/hal-01483490
[32]
L. De Pascale, J. Louet.
A study of the dual problem of the one-dimensional L-infinity optimal transport problem with applications, August 2017, https://arxiv.org/abs/1704.02730 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01504249
[33]
S. Di Marino, J. Louet.
The entropic regularization of the Monge problem on the real line, March 2017, https://arxiv.org/abs/1703.10457 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01498732
[34]
V. Duval.
A characterization of the Non-Degenerate Source Condition in Super-Resolution, December 2017, https://arxiv.org/abs/1712.06373 - working paper or preprint.
https://hal.inria.fr/hal-01665805
[35]
T. Gallouët, F.-X. Vialard.
The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view, December 2017, https://arxiv.org/abs/1609.04006 - To appear in Journal of Differential Equations, 26 pages.
https://hal.archives-ouvertes.fr/hal-01363647
[36]
K. Lounici, K. Meziani, G. Peyré.
Adaptive sup-norm estimation of the Wigner function in noisy quantum homodyne tomography, March 2017, https://arxiv.org/abs/1506.06941 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01491197
[37]
M. Seidl, S. D. Marino, A. Gerolin, L. Nenna, K. J. H. Giesbertz, P. Gori-Giorgi.
The strictly-correlated electron functional for spherically symmetric systems revisited, February 2017, working paper or preprint.
https://hal.inria.fr/hal-01469822
[38]
F.-X. Vialard.
Variational Second-Order Interpolation on the Group of Diffeomorphisms with a Right-Invariant Metric, January 2018, https://arxiv.org/abs/1801.04146 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01682108
References in notes
[39]
I. Abraham, R. Abraham, M. Bergounioux, G. Carlier.
Tomographic reconstruction from a few views: a multi-marginal optimal transport approach, in: Preprint Hal-01065981, 2014.
[40]
Y. Achdou, V. Perez.
Iterative strategies for solving linearized discrete mean field games systems, in: Netw. Heterog. Media, 2012, vol. 7, no 2, pp. 197–217.
http://dx.doi.org/10.3934/nhm.2012.7.197
[41]
M. Agueh, G. Carlier.
Barycenters in the Wasserstein space, in: SIAM J. Math. Anal., 2011, vol. 43, no 2, pp. 904–924.
[42]
F. Alter, V. Caselles, A. Chambolle.
Evolution of Convex Sets in the Plane by Minimizing the Total Variation Flow, in: Interfaces and Free Boundaries, 2005, vol. 332, pp. 329–366.
[43]
F. R. Bach.
Consistency of the Group Lasso and Multiple Kernel Learning, in: J. Mach. Learn. Res., June 2008, vol. 9, pp. 1179–1225.
http://dl.acm.org/citation.cfm?id=1390681.1390721
[44]
F. R. Bach.
Consistency of Trace Norm Minimization, in: J. Mach. Learn. Res., June 2008, vol. 9, pp. 1019–1048.
http://dl.acm.org/citation.cfm?id=1390681.1390716
[45]
M. Bates.
Models of natural language understanding, in: Proceedings of the National Academy of Sciences, 1995, vol. 92, no 22, pp. 9977-9982.
[46]
H. H. Bauschke, P. L. Combettes.
A Dykstra-like algorithm for two monotone operators, in: Pacific Journal of Optimization, 2008, vol. 4, no 3, pp. 383–391.
[47]
M. F. Beg, M. I. Miller, A. Trouvé, L. Younes.
Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, in: International Journal of Computer Vision, February 2005, vol. 61, no 2, pp. 139–157.
http://dx.doi.org/10.1023/B:VISI.0000043755.93987.aa
[48]
M. Beiglbock, P. Henry-Labordère, F. Penkner.
Model-independent bounds for option prices mass transport approach, in: Finance and Stochastics, 2013, vol. 17, no 3, pp. 477-501.
http://dx.doi.org/10.1007/s00780-013-0205-8
[49]
G. Bellettini, V. Caselles, M. Novaga.
The Total Variation Flow in RN, in: J. Differential Equations, 2002, vol. 184, no 2, pp. 475–525.
[50]
J.-D. Benamou, Y. Brenier.
A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, in: Numer. Math., 2000, vol. 84, no 3, pp. 375–393.
http://dx.doi.org/10.1007/s002110050002
[51]
J.-D. Benamou, Y. Brenier.
Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère/transport problem, in: SIAM J. Appl. Math., 1998, vol. 58, no 5, pp. 1450–1461.
[52]
J.-D. Benamou, G. Carlier.
Augmented Lagrangian algorithms for variational problems with divergence constraints, in: JOTA, 2015.
[53]
J.-D. Benamou, G. Carlier, N. Bonne.
An Augmented Lagrangian Numerical approach to solving Mean-Fields Games, Inria, December 2013, 30 p.
http://hal.inria.fr/hal-00922349
[54]
J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré.
Iterative Bregman Projections for Regularized Transportation Problems, in: SIAM J. Sci. Comp., 2015, to appear.
[55]
J.-D. Benamou, G. Carlier, Q. Mérigot, É. Oudet.
Discretization of functionals involving the Monge-Ampère operator, HAL, July 2014.
https://hal.archives-ouvertes.fr/hal-01056452
[56]
J.-D. Benamou, F. Collino, J.-M. Mirebeau.
Monotone and Consistent discretization of the Monge-Ampère operator, in: arXiv preprint arXiv:1409.6694, 2014, to appear in Math of Comp.
[57]
J.-D. Benamou, B. D. Froese, A. Oberman.
Two numerical methods for the elliptic Monge-Ampère equation, in: M2AN Math. Model. Numer. Anal., 2010, vol. 44, no 4, pp. 737–758.
[58]
J.-D. Benamou, B. D. Froese, A. Oberman.
Numerical solution of the optimal transportation problem using the Monge–Ampere equation, in: Journal of Computational Physics, 2014, vol. 260, pp. 107–126.
[59]
F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio.
Numerical approximation of continuous traffic congestion equilibria, in: Netw. Heterog. Media, 2009, vol. 4, no 3, pp. 605–623.
[60]
M. Benning, M. Burger.
Ground states and singular vectors of convex variational regularization methods, in: Meth. Appl. Analysis, 2013, vol. 20, pp. 295–334.
[61]
B. Berkels, A. Effland, M. Rumpf.
Time discrete geodesic paths in the space of images, in: Arxiv preprint, 2014.
[62]
E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess.
Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, in: Science, 2006, vol. 313, no 5793, pp. 1642–1645. [ DOI : 10.1126/science.1127344 ]
http://science.sciencemag.org/content/313/5793/1642
[63]
J. Bigot, T. Klein.
Consistent estimation of a population barycenter in the Wasserstein space, in: Preprint arXiv:1212.2562, 2012.
[64]
A. Blanchet, G. Carlier.
Optimal Transport and Cournot-Nash Equilibria, in: Mathematics of Operations Resarch, 2015, to appear.
[65]
A. Blanchet, P. Laurençot.
The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in Rd,d3, in: Comm. Partial Differential Equations, 2013, vol. 38, no 4, pp. 658–686.
http://dx.doi.org/10.1080/03605302.2012.757705
[66]
J. Bleyer, G. Carlier, V. Duval, J.-M. Mirebeau, G. Peyré.
A Γ-Convergence Result for the Upper Bound Limit Analysis of Plates, in: arXiv preprint arXiv:1410.0326, 2014.
[67]
N. Bonneel, J. Rabin, G. Peyré, H. Pfister.
Sliced and Radon Wasserstein Barycenters of Measures, in: Journal of Mathematical Imaging and Vision, 2015, vol. 51, no 1, pp. 22–45.
http://hal.archives-ouvertes.fr/hal-00881872/
[68]
U. Boscain, R. Chertovskih, J.-P. Gauthier, D. Prandi, A. Remizov.
Highly corrupted image inpainting through hypoelliptic diffusion, Preprint CMAP, 2014.
http://hal.archives-ouvertes.fr/hal-00842603/
[69]
G. Bouchitté, G. Buttazzo.
Characterization of optimal shapes and masses through Monge-Kantorovich equation, in: J. Eur. Math. Soc. (JEMS), 2001, vol. 3, no 2, pp. 139–168.
http://dx.doi.org/10.1007/s100970000027
[70]
L. Brasco, G. Carlier, F. Santambrogio.
Congested traffic dynamics, weak flows and very degenerate elliptic equations, in: J. Math. Pures Appl. (9), 2010, vol. 93, no 6, pp. 652–671.
[71]
L. M. Bregman.
The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, in: USSR computational mathematics and mathematical physics, 1967, vol. 7, no 3, pp. 200–217.
[72]
Y. Brenier.
Generalized solutions and hydrostatic approximation of the Euler equations, in: Phys. D, 2008, vol. 237, no 14-17, pp. 1982–1988.
http://dx.doi.org/10.1016/j.physd.2008.02.026
[73]
Y. Brenier.
Décomposition polaire et réarrangement monotone des champs de vecteurs, in: C. R. Acad. Sci. Paris Sér. I Math., 1987, vol. 305, no 19, pp. 805–808.
[74]
Y. Brenier.
Polar factorization and monotone rearrangement of vector-valued functions, in: Comm. Pure Appl. Math., 1991, vol. 44, no 4, pp. 375–417.
http://dx.doi.org/10.1002/cpa.3160440402
[75]
Y. Brenier, U. Frisch, M. Henon, G. Loeper, S. Matarrese, R. Mohayaee, A. Sobolevski.
Reconstruction of the early universe as a convex optimization problem, in: Mon. Not. Roy. Astron. Soc., 2003, vol. 346, pp. 501–524.
http://arxiv.org/pdf/astro-ph/0304214.pdf
[76]
M. Bruveris, L. Risser, F.-X. Vialard.
Mixture of Kernels and Iterated Semidirect Product of Diffeomorphisms Groups, in: Multiscale Modeling & Simulation, 2012, vol. 10, no 4, pp. 1344-1368.
[77]
M. Burger, M. DiFrancesco, P. Markowich, M. T. Wolfram.
Mean field games with nonlinear mobilities in pedestrian dynamics, in: DCDS B, 2014, vol. 19.
[78]
M. Burger, M. Franek, C. Schonlieb.
Regularized regression and density estimation based on optimal transport, in: Appl. Math. Res. Expr., 2012, vol. 2, pp. 209–253.
[79]
M. Burger, S. Osher.
A guide to the TV zoo, in: Level-Set and PDE-based Reconstruction Methods, Springer, 2013.
[80]
G. Buttazzo, C. Jimenez, É. Oudet.
An optimization problem for mass transportation with congested dynamics, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1961–1976.
[81]
H. Byrne, D. Drasdo.
Individual-based and continuum models of growing cell populations: a comparison, in: Journal of Mathematical Biology, 2009, vol. 58, no 4-5, pp. 657-687.
[82]
L. A. Caffarelli.
The regularity of mappings with a convex potential, in: J. Amer. Math. Soc., 1992, vol. 5, no 1, pp. 99–104.
http://dx.doi.org/10.2307/2152752
[83]
L. A. Caffarelli, S. A. Kochengin, V. Oliker.
On the numerical solution of the problem of reflector design with given far-field scattering data, in: Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997), Providence, RI, Contemp. Math., Amer. Math. Soc., 1999, vol. 226, pp. 13–32.
http://dx.doi.org/10.1090/conm/226/03233
[84]
C. CanCeritoglu.
Computational Analysis of LDDMM for Brain Mapping, in: Frontiers in Neuroscience, 2013, vol. 7.
[85]
E. Candes, M. Wakin.
An Introduction to Compressive Sensing, in: IEEE Signal Processing Magazine, 2008, vol. 25, no 2, pp. 21–30.
[86]
E. J. Candès, C. Fernandez-Granda.
Super-Resolution from Noisy Data, in: Journal of Fourier Analysis and Applications, 2013, vol. 19, no 6, pp. 1229–1254.
[87]
E. J. Candès, C. Fernandez-Granda.
Towards a Mathematical Theory of Super-Resolution, in: Communications on Pure and Applied Mathematics, 2014, vol. 67, no 6, pp. 906–956.
[88]
P. Cardaliaguet, G. Carlier, B. Nazaret.
Geodesics for a class of distances in the space of probability measures, in: Calc. Var. Partial Differential Equations, 2013, vol. 48, no 3-4, pp. 395–420.
[89]
G. Carlier.
A general existence result for the principal-agent problem with adverse selection, in: J. Math. Econom., 2001, vol. 35, no 1, pp. 129–150.
[90]
G. Carlier, V. Chernozhukov, A. Galichon.
Vector Quantile Regression, Arxiv 1406.4643, 2014.
[91]
G. Carlier, M. Comte, I. Ionescu, G. Peyré.
A Projection Approach to the Numerical Analysis of Limit Load Problems, in: Mathematical Models and Methods in Applied Sciences, 2011, vol. 21, no 6, pp. 1291–1316. [ DOI : doi:10.1142/S0218202511005325 ]
http://hal.archives-ouvertes.fr/hal-00450000/
[92]
G. Carlier, X. Dupuis.
An iterated projection approach to variational problems under generalized convexity constraints and applications, In preparation, 2015.
[93]
G. Carlier, I. Ekeland.
Matching for teams, in: Econom. Theory, 2010, vol. 42, no 2, pp. 397–418.
[94]
G. Carlier, C. Jimenez, F. Santambrogio.
Optimal Transportation with Traffic Congestion and Wardrop Equilibria, in: SIAM Journal on Control and Optimization, 2008, vol. 47, no 3, pp. 1330-1350.
[95]
G. Carlier, T. Lachand-Robert, B. Maury.
A numerical approach to variational problems subject to convexity constraint, in: Numer. Math., 2001, vol. 88, no 2, pp. 299–318.
http://dx.doi.org/10.1007/PL00005446
[96]
G. Carlier, A. Oberman, É. Oudet.
Numerical methods for matching for teams and Wasserstein barycenters, in: M2AN, 2015, to appear.
[97]
G. Carlier, F. Santambrogio.
A continuous theory of traffic congestion and Wardrop equilibria, in: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2011, vol. 390, no Teoriya Predstavlenii, Dinamicheskie Sistemy, Kombinatornye Metody. XX, pp. 69–91, 307–308.
[98]
J. A. Carrillo, S. Lisini, E. Mainini.
Uniqueness for Keller-Segel-type chemotaxis models, in: Discrete Contin. Dyn. Syst., 2014, vol. 34, no 4, pp. 1319–1338.
http://dx.doi.org/10.3934/dcds.2014.34.1319
[99]
V. Caselles, A. Chambolle, M. Novaga.
The discontinuity set of solutions of the TV denoising problem and some extensions, in: Multiscale Modeling and Simulation, 2007, vol. 6, no 3, pp. 879–894.
[100]
F. A. C. C. Chalub, P. A. Markowich, B. Perthame, C. Schmeiser.
Kinetic models for chemotaxis and their drift-diffusion limits, in: Monatsh. Math., 2004, vol. 142, no 1-2, pp. 123–141.
http://dx.doi.org/10.1007/s00605-004-0234-7
[101]
A. Chambolle, T. Pock.
On the ergodic convergence rates of a first-order primal-dual algorithm, in: Preprint OO/2014/09/4532, 2014.
[102]
G. Charpiat, G. Nardi, G. Peyré, F.-X. Vialard.
Finsler Steepest Descent with Applications to Piecewise-regular Curve Evolution, Preprint hal-00849885, 2013.
http://hal.archives-ouvertes.fr/hal-00849885/
[103]
S. S. Chen, D. L. Donoho, M. A. Saunders.
Atomic decomposition by basis pursuit, in: SIAM journal on scientific computing, 1999, vol. 20, no 1, pp. 33–61.
[104]
P. Choné, H. V. J. Le Meur.
Non-convergence result for conformal approximation of variational problems subject to a convexity constraint, in: Numer. Funct. Anal. Optim., 2001, vol. 22, no 5-6, pp. 529–547.
http://dx.doi.org/10.1081/NFA-100105306
[105]
C. Cotar, G. Friesecke, C. Kluppelberg.
Density Functional Theory and Optimal Transportation with Coulomb Cost, in: Communications on Pure and Applied Mathematics, 2013, vol. 66, no 4, pp. 548–599.
http://dx.doi.org/10.1002/cpa.21437
[106]
M. J. P. Cullen, W. Gangbo, G. Pisante.
The semigeostrophic equations discretized in reference and dual variables, in: Arch. Ration. Mech. Anal., 2007, vol. 185, no 2, pp. 341–363.
http://dx.doi.org/10.1007/s00205-006-0040-6
[107]
M. J. P. Cullen, J. Norbury, R. J. Purser.
Generalised Lagrangian solutions for atmospheric and oceanic flows, in: SIAM J. Appl. Math., 1991, vol. 51, no 1, pp. 20–31.
[108]
M. Cuturi, D. Avis.
Ground Metric Learning, in: J. Mach. Learn. Res., January 2014, vol. 15, no 1, pp. 533–564.
http://dl.acm.org/citation.cfm?id=2627435.2627452
[109]
M. Cuturi.
Sinkhorn Distances: Lightspeed Computation of Optimal Transport, in: Proc. NIPS, C. J. C. Burges, L. Bottou, Z. Ghahramani, K. Q. Weinberger (editors), 2013, pp. 2292–2300.
[110]
Y. De Castro, F. Gamboa, D. Henrion, R. Hess, J. Lasserre.
Approximate Optimal Designs for Multivariate Polynomial Regression, October 2017, Accepted to Annals of Statistics.
https://hal.laas.fr/hal-01483490
[111]
E. J. Dean, R. Glowinski.
Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type, in: Comput. Methods Appl. Mech. Engrg., 2006, vol. 195, no 13-16, pp. 1344–1386.
[112]
V. Duval, G. Peyré.
Exact Support Recovery for Sparse Spikes Deconvolution, in: Foundations of Computational Mathematics, 2014, pp. 1-41.
http://dx.doi.org/10.1007/s10208-014-9228-6
[113]
V. Duval, G. Peyré.
Sparse Spikes Deconvolution on Thin Grids, HAL, 2015, no 01135200.
http://hal.archives-ouvertes.fr/hal-01135200
[114]
J. Fehrenbach, J.-M. Mirebeau.
Sparse Non-negative Stencils for Anisotropic Diffusion, in: Journal of Mathematical Imaging and Vision, 2014, vol. 49, no 1, pp. 123-147.
http://dx.doi.org/10.1007/s10851-013-0446-3
[115]
C. Fernandez-Granda.
Support detection in super-resolution, in: Proc. Proceedings of the 10th International Conference on Sampling Theory and Applications, 2013, pp. 145–148.
[116]
A. Figalli, R. McCann, Y. Kim.
When is multi-dimensional screening a convex program?, in: Journal of Economic Theory, 2011.
[117]
J.-B. Fiot, H. Raguet, L. Risser, L. D. Cohen, J. Fripp, F.-X. Vialard.
Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression, in: NeuroImage: Clinical, 2014, vol. 4, no 0, pp. 718 - 729. [ DOI : 10.1016/j.nicl.2014.02.002 ]
http://www.sciencedirect.com/science/article/pii/S2213158214000205
[118]
J.-B. Fiot, L. Risser, L. D. Cohen, J. Fripp, F.-X. Vialard.
Local vs Global Descriptors of Hippocampus Shape Evolution for Alzheimer's Longitudinal Population Analysis, in: Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, vol. 7570, pp. 13-24.
http://dx.doi.org/10.1007/978-3-642-33555-6_2
[119]
U. Frisch, S. Matarrese, R. Mohayaee, A. Sobolevski.
Monge-Ampère-Kantorovitch (MAK) reconstruction of the eary universe, in: Nature, 2002, vol. 417, no 260.
[120]
B. D. Froese, A. Oberman.
Convergent filtered schemes for the Monge-Ampère partial differential equation, in: SIAM J. Numer. Anal., 2013, vol. 51, no 1, pp. 423–444.
[121]
A. Galichon, P. Henry-Labordère, N. Touzi.
A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Loopback options, in: submitted to Annals of Applied Probability, 2011.
[122]
W. Gangbo, R. McCann.
The geometry of optimal transportation, in: Acta Math., 1996, vol. 177, no 2, pp. 113–161.
http://dx.doi.org/10.1007/BF02392620
[123]
E. Ghys.
Gaspard Monge, Le mémoire sur les déblais et les remblais, in: Image des mathématiques, CNRS, 2012.
http://images.math.cnrs.fr/Gaspard-Monge,1094.html
[124]
O. Guéant, J.-M. Lasry, P.-L. Lions.
Mean field games and applications, in: Paris-Princeton Lectures on Mathematical Finance 2010, Berlin, Lecture Notes in Math., Springer, 2011, vol. 2003, pp. 205–266.
http://dx.doi.org/10.1007/978-3-642-14660-2_3
[125]
T. Hastie, R. Tibshirani, J. Friedman.
The Elements of Statistical Learning, Springer Series in Statistics, Springer New York Inc., New York, NY, USA, 2001.
[126]
G. Herman.
Image reconstruction from projections: the fundamentals of computerized tomography, Academic Press, 1980.
[127]
D. D. Holm, J. T. Ratnanather, A. Trouvé, L. Younes.
Soliton dynamics in computational anatomy, in: NeuroImage, 2004, vol. 23, pp. S170–S178.
[128]
B. J. Hoskins.
The mathematical theory of frontogenesis, in: Annual review of fluid mechanics, Vol. 14, Palo Alto, CA, Annual Reviews, 1982, pp. 131–151.
[129]
R. Jordan, D. Kinderlehrer, F. Otto.
The variational formulation of the Fokker-Planck equation, in: SIAM J. Math. Anal., 1998, vol. 29, no 1, pp. 1–17.
[130]
W. Jäger, S. Luckhaus.
On explosions of solutions to a system of partial differential equations modelling chemotaxis, in: Trans. Amer. Math. Soc., 1992, vol. 329, no 2, pp. 819–824.
http://dx.doi.org/10.2307/2153966
[131]
L. Kantorovitch.
On the translocation of masses, in: C. R. (Doklady) Acad. Sci. URSS (N.S.), 1942, vol. 37, pp. 199–201.
[132]
E. Klann.
A Mumford-Shah-Like Method for Limited Data Tomography with an Application to Electron Tomography, in: SIAM J. Imaging Sciences, 2011, vol. 4, no 4, pp. 1029–1048.
[133]
J.-M. Lasry, P.-L. Lions.
Mean field games, in: Jpn. J. Math., 2007, vol. 2, no 1, pp. 229–260.
http://dx.doi.org/10.1007/s11537-007-0657-8
[134]
J. Lasserre.
Global Optimization with Polynomials and the Problem of Moments, in: SIAM Journal on Optimization, 2001, vol. 11, no 3, pp. 796-817.
[135]
J. Lellmann, D. A. Lorenz, C. Schönlieb, T. Valkonen.
Imaging with Kantorovich-Rubinstein Discrepancy, in: SIAM J. Imaging Sciences, 2014, vol. 7, no 4, pp. 2833–2859.
[136]
A. S. Lewis.
Active sets, nonsmoothness, and sensitivity, in: SIAM Journal on Optimization, 2003, vol. 13, no 3, pp. 702–725.
[137]
B. Li, F. Habbal, M. Ortiz.
Optimal transportation meshfree approximation schemes for Fluid and plastic Flows, in: Int. J. Numer. Meth. Engng 83:1541–579, 2010, vol. 83, pp. 1541–1579.
[138]
G. Loeper.
A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system, in: SIAM J. Math. Anal., 2006, vol. 38, no 3, pp. 795–823 (electronic).
[139]
G. Loeper, F. Rapetti.
Numerical solution of the Monge-Ampére equation by a Newton's algorithm, in: C. R. Math. Acad. Sci. Paris, 2005, vol. 340, no 4, pp. 319–324.
[140]
D. Lombardi, E. Maitre.
Eulerian models and algorithms for unbalanced optimal transport, in: Preprint hal-00976501, 2013.
[141]
C. Léonard.
A survey of the Schrödinger problem and some of its connections with optimal transport, in: Discrete Contin. Dyn. Syst., 2014, vol. 34, no 4, pp. 1533–1574.
http://dx.doi.org/10.3934/dcds.2014.34.1533
[142]
J. Maas, M. Rumpf, C. Schonlieb, S. Simon.
A generalized model for optimal transport of images including dissipation and density modulation, in: Arxiv preprint, 2014.
[143]
S. G. Mallat.
A wavelet tour of signal processing, Third, Elsevier/Academic Press, Amsterdam, 2009.
[144]
B. Maury, A. Roudneff-Chupin, F. Santambrogio.
A macroscopic crowd motion model of gradient flow type, in: Math. Models Methods Appl. Sci., 2010, vol. 20, no 10, pp. 1787–1821.
http://dx.doi.org/10.1142/S0218202510004799
[145]
M. I. Miller, A. Trouvé, L. Younes.
Geodesic Shooting for Computational Anatomy, in: Journal of Mathematical Imaging and Vision, March 2006, vol. 24, no 2, pp. 209–228.
http://dx.doi.org/10.1007/s10851-005-3624-0
[146]
J.-M. Mirebeau.
Adaptive, Anisotropic and Hierarchical cones of Discrete Convex functions, in: Preprint, 2014.
[147]
J.-M. Mirebeau.
Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction, in: SIAM Journal on Numerical Analysis, 2014, vol. 52, no 4, pp. 1573-1599.
[148]
Q. Mérigot.
A multiscale approach to optimal transport, in: Computer Graphics Forum, 2011, vol. 30, no 5, pp. 1583–1592.
[149]
Q. Mérigot, É. Oudet.
Handling Convexity-Like Constraints in Variational Problems, in: SIAM J. Numer. Anal., 2014, vol. 52, no 5, pp. 2466–2487.
[150]
N. Papadakis, G. Peyré, É. Oudet.
Optimal Transport with Proximal Splitting, in: SIAM Journal on Imaging Sciences, 2014, vol. 7, no 1, pp. 212–238. [ DOI : 10.1137/130920058 ]
http://hal.archives-ouvertes.fr/hal-00816211/
[151]
B. Pass, N. Ghoussoub.
Optimal transport: From moving soil to same-sex marriage, in: CMS Notes, 2013, vol. 45, pp. 14–15.
[152]
B. Pass.
Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation Problem, in: SIAM Journal on Mathematical Analysis, 2011, vol. 43, no 6, pp. 2758-2775.
[153]
J. Pennington, R. Socher, C. Manning.
Glove: Global Vectors for Word Representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, 2014, pp. 1532–1543.
[154]
B. Perthame, F. Quiros, J. L. Vazquez.
The Hele-Shaw Asymptotics for Mechanical Models of Tumor Growth, in: Archive for Rational Mechanics and Analysis, 2014, vol. 212, no 1, pp. 93-127.
http://dx.doi.org/10.1007/s00205-013-0704-y
[155]
J. Petitot.
The neurogeometry of pinwheels as a sub-riemannian contact structure, in: Journal of Physiology-Paris, 2003, vol. 97, no 23, pp. 265–309.
[156]
G. Peyré.
Texture Synthesis with Grouplets, in: Pattern Analysis and Machine Intelligence, IEEE Transactions on, April 2010, vol. 32, no 4, pp. 733–746.
[157]
B. Piccoli, F. Rossi.
Generalized Wasserstein distance and its application to transport equations with source, in: Archive for Rational Mechanics and Analysis, 2014, vol. 211, no 1, pp. 335–358.
[158]
C. Poon.
Structure dependent sampling in compressed sensing: theoretical guarantees for tight frames, in: Applied and Computational Harmonic Analysis, 2015.
[159]
C. Prins, J.H.M. ten. Thije Boonkkamp, J. van . Roosmalen, W.L. IJzerman, T.W. Tukker.
A numerical method for the design of free-form reflectors for lighting applications, in: External Report, CASA Report, No. 13-22, 2013.
http://www.win.tue.nl/analysis/reports/rana13-22.pdf
[160]
H. Raguet, J. Fadili, G. Peyré.
A Generalized Forward-Backward Splitting, in: SIAM Journal on Imaging Sciences, 2013, vol. 6, no 3, pp. 1199–1226. [ DOI : 10.1137/120872802 ]
http://hal.archives-ouvertes.fr/hal-00613637/
[161]
J.-C. Rochet, P. Choné.
Ironing, Sweeping and multi-dimensional screening, in: Econometrica, 1998.
[162]
J. Rubinstein, G. Wolansky.
Intensity control with a free-form lens, in: J Opt Soc Am A Opt Image Sci Vis., 2007, vol. 24.
[163]
L. Rudin, S. Osher, E. Fatemi.
Nonlinear total variation based noise removal algorithms, in: Physica D: Nonlinear Phenomena, 1992, vol. 60, no 1, pp. 259–268.
http://dx.doi.org/10.1016/0167-2789(92)90242-F
[164]
M. J. Rust, M. Bates, X. Zhuang.
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), in: Nature methods, 2006, vol. 3, no 10, pp. 793–796.
[165]
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, F. Lenzen.
Variational Methods in Imaging, Springer, 2008.
[166]
T. Schmah, L. Risser, F.-X. Vialard.
Left-Invariant Metrics for Diffeomorphic Image Registration with Spatially-Varying Regularisation, in: MICCAI (1), 2013, pp. 203-210.
[167]
T. Schmah, L. Risser, F.-X. Vialard.
Diffeomorphic image matching with left-invariant metrics, in: Fields Institute Communications series, special volume in memory of Jerrold E. Marsden, January 2014.
[168]
B. Schölkopf, A. J. Smola.
Learning with kernels : support vector machines, regularization, optimization, and beyond, Adaptive computation and machine learning, MIT Press, 2002.
http://www.worldcat.org/oclc/48970254
[169]
J. Solomon, F. de Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du, L. Guibas.
Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains, in: ACM Transaction on Graphics, Proc. SIGGRAPH'15, 2015, to appear.
[170]
R. Tibshirani.
Regression shrinkage and selection via the Lasso, in: Journal of the Royal Statistical Society. Series B. Methodological, 1996, vol. 58, no 1, pp. 267–288.
[171]
A. Trouvé, F.-X. Vialard.
Shape splines and stochastic shape evolutions: A second order point of view, in: Quarterly of Applied Mathematics, 2012.
[172]
S. Vaiter, M. Golbabaee, J. Fadili, G. Peyré.
Model Selection with Piecewise Regular Gauges, in: Information and Inference, 2015, to appear.
http://hal.archives-ouvertes.fr/hal-00842603/
[173]
F.-X. Vialard, L. Risser, D. Rueckert, C. Cotter.
Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation, in: International Journal of Computer Vision, 2012, vol. 97, no 2, pp. 229-241.
http://dx.doi.org/10.1007/s11263-011-0481-8
[174]
F.-X. Vialard, L. Risser.
Spatially-Varying Metric Learning for Diffeomorphic Image Registration: A Variational Framework, in: Medical Image Computing and Computer-Assisted Intervention MICCAI 2014, Lecture Notes in Computer Science, Springer International Publishing, 2014, vol. 8673, pp. 227-234.
[175]
C. Villani.
Topics in optimal transportation, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003, vol. 58, xvi+370 p.
[176]
C. Villani.
Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, vol. 338, xxii+973 p, Old and new.
http://dx.doi.org/10.1007/978-3-540-71050-9
[177]
X.-J. Wang.
On the design of a reflector antenna. II, in: Calc. Var. Partial Differential Equations, 2004, vol. 20, no 3, pp. 329–341.
http://dx.doi.org/10.1007/s00526-003-0239-4
[178]
B. Wirth, L. Bar, M. Rumpf, G. Sapiro.
A continuum mechanical approach to geodesics in shape space, in: International Journal of Computer Vision, 2011, vol. 93, no 3, pp. 293–318.
[179]
J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, S. Yan.
Sparse representation for computer vision and pattern recognition, in: Proceedings of the IEEE, 2010, vol. 98, no 6, pp. 1031–1044.