Personnel
Overall Objectives
Research Program
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
R. Alicandro, M. Cicalese, A. Gloria.
Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, in: Arch. Ration. Mech. Anal., 2011, vol. 200, no 3, pp. 881–943.
[2]
A. Gloria.
Numerical homogenization: survey, new results, and perspectives, in: Esaim. Proc., 2012, vol. 37, Mathematical and numerical approaches for multiscale problem.
[3]
A. Gloria, F. Otto.
An optimal variance estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Probab., 2011, vol. 39, no 3, pp. 779–856.
[4]
A. Gloria, F. Otto.
An optimal error estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Appl. Probab., 2012, vol. 22, no 1, pp. 1–28.
[5]
A. Gloria, M. Penrose.
Random parking, Euclidean functionals, and rubber elasticity, in: Comm. Math. Physics, 2013, vol. 321, no 1, pp. 1–31.
Publications of the year

Articles in International Peer-Reviewed Journals

[6]
C. Besse, G. Dujardin, I. Lacroix-Violet.
High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates, in: SIAM Journal on Numerical Analysis, 2017, vol. 55, no 3, pp. 1387-1411, https://arxiv.org/abs/1507.00550.
https://hal.archives-ouvertes.fr/hal-01170888
[7]
D. Bonheure, F. Hamel.
One-dimensional symmetry and Liouville type results for the fourth order Allen-Cahn equation in ℝ N, in: Chinese Annals of Mathematics - Series B, January 2017, vol. 38, no 1, pp. 149 - 172, https://arxiv.org/abs/1508.00333 - Dedicated to Haïm Brezis with deep admiration.. [ DOI : 10.1007/s11401-016-1065-2 ]
https://hal.archives-ouvertes.fr/hal-01182688
[8]
J.-B. Casteras, D. Bonheure, T. Gou, L. Jeanjean.
Strong Instability of Ground States to a Fourth Order Schrödinger Equation, in: International Mathematics Research Notices, November 2017. [ DOI : 10.1093/imrn/rnx273 ]
https://hal.archives-ouvertes.fr/hal-01665513
[9]
J.-B. Casteras, D. Bonheure, B. Noris.
Multiple positive solutions of the stationary Keller–Segel system, in: Calculus of Variations and Partial Differential Equations, June 2017, vol. 56, no 3. [ DOI : 10.1007/s00526-017-1163-3 ]
https://hal.archives-ouvertes.fr/hal-01665518
[10]
J.-B. Casteras, I. Holopainen, J. B. Ripoll.
On the Asymptotic Dirichlet Problem for the Minimal Hypersurface Equation in a Hadamard Manifold, in: Potential Analysis, November 2017, vol. 47, no 4, pp. 485 - 501. [ DOI : 10.1007/s11118-017-9624-z ]
https://hal.archives-ouvertes.fr/hal-01665516
[11]
D. Cohen, G. Dujardin.
Exponential integrators for nonlinear Schrödinger equations with white noise dispersion, in: Stochastics and Partial Differential Equations Analysis and Computations, December 2017.
https://hal.inria.fr/hal-01403036
[12]
S. De Bievre, P. E. Parris.
A Rigourous Demonstration of the Validity of Boltzmann’s Scenario for the Spatial Homogenization of a Freely Expanding Gas and the Equilibration of the Kac Ring, in: Journal of Statistical Physics, August 2017, vol. 168, no 4, pp. 772 - 793. [ DOI : 10.1007/s10955-017-1834-7 ]
https://hal.archives-ouvertes.fr/hal-01665756
[13]
P. Gonçalves, M. Jara, M. Simon.
Second order Boltzmann-Gibbs principle for polynomial functions and applications, in: Journal of Statistical Physics, 2017, https://arxiv.org/abs/1507.06076. [ DOI : 10.1007/s10955-016-1686-6 ]
https://hal.inria.fr/hal-01381009
[14]
M. Simon, C. Olivera.
Non-local Conservation Law from Stochastic Particle Systems, in: Journal of Dynamics and Differential Equations, 2017, https://arxiv.org/abs/1701.04677. [ DOI : 10.1007/s10884-017-9620-4 ]
https://hal.inria.fr/hal-01502451
[15]
G. G. L. Tiofack, S. Coulibaly, M. Taki, S. De Bièvre, G. Dujardin.
Periodic modulations controlling Kuznetsov-Ma soliton formation in nonlinear Schrödinger equations, in: Physics Letters A, June 2017.
https://hal.inria.fr/hal-01403028

Other Publications

[16]
A. Benoit.
A necessary condition for the strong stability of finite difference scheme approximations for hyperbolic corner domains, March 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01490903
[17]
A. Benoit.
Geometric optics expansions for hyperbolic corner problems II : from weak stability to violent instability, March 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01242899
[18]
C. Bernardin, P. Gonçalves, M. Jara, M. Simon.
Interpolation process between standard diffusion and fractional diffusion, August 2017, https://arxiv.org/abs/1607.07238 - to appear in AIHP B.
https://hal.archives-ouvertes.fr/hal-01348503
[19]
C. ´. Bernardin, P. Gonçalves, M. Jara, M. Simon.
Nonlinear Perturbation of a Noisy Hamiltonian Lattice Field Model: Universality Persistence, August 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01491433
[20]
J.-B. Casteras, D. Bonheure, C. Román.
Unbounded mass radial solutions for the Keller-Segel equation in the disk, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01665514
[21]
J.-B. Casteras, D. Bonheure, E. M. d. Santos, R. Nascimento.
Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation, December 2017, working paper or preprint. [ DOI : 10.09775 ]
https://hal.archives-ouvertes.fr/hal-01665515
[22]
J.-B. Casteras.
Renormalized solutions to a fourth order NLS in the mass subcritical regime, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01665517
[23]
J.-B. Casteras, E. Heinonen, I. Holopainen.
Existence and non-existence of minimal graphic and p-harmonic functions, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01665512
[24]
S. De Bievre.
Stability analysis of a Vlasov-Wave system describing particles interacting with their environment, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01666916
[25]
S. De Bièvre, T. Goudon, A. Vavasseur.
Stability analysis of a Vlasov-Wave system describing particles interacting with their environment, September 2017, working paper or preprint.
https://hal.inria.fr/hal-01581676
[26]
M. Duerinckx, A. Gloria.
Weighted function inequalities: Concentration properties, November 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01633040
[27]
M. Duerinckx, A. Gloria.
Weighted functional inequalities: Constructive approach, November 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01633041
[28]
M. Duerinckx, A. Gloria.
Weighted second-order Poincaré inequalities: Application to RSA models, November 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01633042
[29]
M. Duerinckx, S. Serfaty.
Mean-field dynamics for Ginzburg-Landau vortices with pinning and applied force, February 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01472582
[30]
P. Gonçalves, N. Perkowski, M. Simon.
Derivation of the stochastic Burgers equation with Dirichlet boundary conditions from the WASEP, December 2017, https://arxiv.org/abs/1710.11011 - 69 pages.
https://hal.inria.fr/hal-01626604
[31]
F. Hernández, M. Simon.
Equilibrium fluctuations for the weakly asymmetric discrete Atlas model, September 2017, working paper or preprint.
https://hal.inria.fr/hal-01591186
[32]
T. Komorowski, S. Olla, M. Simon.
Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities, 2017, https://arxiv.org/abs/1609.02413 - Accepted for the publication in Kinetic and Related Models.
https://hal.archives-ouvertes.fr/hal-01358979
References in notes
[33]
G. Agrawal.
Nonlinear fiber optics, Academic Press, 2006.
[34]
B. Aguer, S. De Bièvre, P. Lafitte, P. E. Parris.
Classical motion in force fields with short range correlations, in: J. Stat. Phys., 2010, vol. 138, no 4-5, pp. 780 – 814.
[35]
G. Basile, C. Bernardin, S. Olla.
Thermal conductivity for a momentum conservative model, in: Comm. Math. Phys., 2009, vol. 287, no 1, pp. 67–98.
http://dx.doi.org/10.1007/s00220-008-0662-7
[36]
A. Benoît, A. Gloria.
Long-time homogenization and asymptotic ballistic transport of classical waves, in: in Annales Scientifiques de l'ENS, 2017, to appear.
[37]
A. Braides.
Homogenization of some almost periodic functionals, in: Rend. Accad. Naz. Sci. XL, 1985, vol. 103, pp. 261–281.
[38]
P. Clavin.
, Instabilities and Nonlinear Patterns of Overdriven Detonations in GasesH. Berestycki, Y. Pomeau (editors), Springer Netherlands, Dordrecht, 2002, pp. 49–97.
https://doi.org/10.1007/978-94-010-0307-0_3
[39]
G. Dal Maso, L. Modica.
Nonlinear stochastic homogenization and ergodic theory, in: J. Reine Angew. Math., 1986, vol. 368, pp. 28–42.
[40]
S. De Bièvre, P. Parris.
Equilibration, generalized equipartition and diffusion in dynamical Lorentz gases, in: J. Stat. Phys., 2011, vol. 142, pp. 356–385.
[41]
M. Disertori, W. Kirsch, A. Klein, F. Klopp, V. Rivasseau.
Random Schrödinger operators, Panoramas et Synthèses, Société Mathématique de France, Paris, 2008, no 25.
[42]
P. Flory.
Statistical mechanics of chain molecules, Interscience Publishers, New York, 1969.
[43]
J.-C. Garreau, B. Vermersch.
Spectral description of the dynamics of ultracold interacting bosons in disordered lattices, in: New. J. Phys., 2013, vol. 15, 045030.
[44]
A. Gloria, P. Le Tallec, M. Vidrascu.
Foundation, analysis, and numerical investigation of a variational network-based model for rubber, in: Continuum Mechanics and Thermodynamics, 2014, vol. 26, no 1, pp. 1–31. [ DOI : 10.1007/s00161-012-0281-6 ]
https://hal.archives-ouvertes.fr/hal-00673406
[45]
P. Gonçalves, M. Jara.
Nonlinear fluctuations of weakly asymmetric interacting particle systems, in: Arch. Ration. Mech. Anal., 2014, vol. 212, no 2, pp. 597–644.
http://dx.doi.org/10.1007/s00205-013-0693-x
[46]
M. Kardar, G. Parisi, Y.-C. Zhang.
Dynamic Scaling of Growing Interfaces, in: Phys. Rev. Lett., Mar 1986, vol. 56, pp. 889–892.
https://link.aps.org/doi/10.1103/PhysRevLett.56.889
[47]
S. Kozlov.
The averaging of random operators, in: Mat. Sb. (N.S.), 1979, vol. 109(151), no 2, pp. 188–202, 327.
[48]
S. Müller.
Homogenization of nonconvex integral functionals and cellular elastic materials, in: Arch. Rat. Mech. Anal., 1987, vol. 99, pp. 189–212.
[49]
A. Naddaf, T. Spencer.
Estimates on the variance of some homogenization problems, Preprint, 1998.
[50]
G. Papanicolaou, S. Varadhan.
Boundary value problems with rapidly oscillating random coefficients, in: Random fields, Vol. I, II (Esztergom, 1979), Amsterdam, Colloq. Math. Soc. János Bolyai, North-Holland, 1981, vol. 27, pp. 835–873.
[51]
H. Spohn.
Nonlinear Fluctuating Hydrodynamics for Anharmonic Chains, in: Journal of Statistical Physics, Mar 2014, vol. 154, no 5, pp. 1191–1227.
https://doi.org/10.1007/s10955-014-0933-y
[52]
H. Spohn.
The Kardar-Parisi-Zhang equation – a statistical physics perspective, in: Arxiv preprint 1601.00499, 01 2016.
[53]
C. Sulem, P.-L. Sulem.
The nonlinear Schrödinger equation, Springer-Verlag, New-York, 1999.
[54]
L. Treloar.
The Physics of Rubber Elasticity, Oxford at the Clarendon Press, Oxford, 1949.
[55]
W. A. Woyczyński.
, Lévy Processes in the Physical SciencesO. E. Barndorff-Nielsen, S. I. Resnick, T. Mikosch (editors), Birkhäuser Boston, Boston, MA, 2001, pp. 241–266.
https://doi.org/10.1007/978-1-4612-0197-7_11