Personnel
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

[1]
Z. Badreddine.
Mass transportation in sub-Riemannian structures admitting singular minimizing geodesics, Université de Bourgogne Franche-Comté, December 2017.
http://www.theses.fr/s121592

Articles in International Peer-Reviewed Journals

[2]
P. Bettiol, B. Bonnard, A. Nolot, J. Rouot.
Sub-Riemannian geometry and swimming at low Reynolds number: the Copepod case, in: ESAIM: Control, Optimisation and Calculus of Variations, 2018. [ DOI : 10.1051/cocv/2017071 ]
https://hal.inria.fr/hal-01442880
[3]
T. Chambrion, L. Giraldi, A. Munnier.
Optimal strokes for driftless swimmers: A general geometric approach, in: ESAIM: Control, Optimisation and Calculus of Variations, February 2017, https://arxiv.org/abs/1404.0776. [ DOI : 10.1051/cocv/2017012 ]
https://hal.archives-ouvertes.fr/hal-00969259
[4]
C. Delhon, C. Moreau, F. Magnin, L. Howarth.
Rotten posts and selected fuel: Charcoal analysis of the first Middle Neolithic village identified in Provence (Cazan-Le Clos du Moulin, Vernegues, Bouches-du-Rhone, South of France), in: Quaternary International, 2017, vol. 458, pp. 1-13. [ DOI : 10.1016/j.quaint.2016.11.001 ]
https://hal.archives-ouvertes.fr/hal-01681617
[5]
L. Giraldi, P. Lissy, C. Moreau, J.-B. Pomet.
Addendum to "Local Controllability of the Two-Link Magneto-Elastic Micro-Swimmer", in: IEEE Transactions on Automatic Control, 2018, https://arxiv.org/abs/1707.01298, forthcoming. [ DOI : 10.1109/TAC.2017.2764422 ]
https://hal.inria.fr/hal-01553296
[6]
L. Giraldi, J.-B. Pomet.
Local Controllability of the Two-Link Magneto-Elastic Micro-Swimmer, in: IEEE Transactions on Automatic Control, 2017, vol. 62, pp. 2512-2518, https://arxiv.org/abs/1506.05918. [ DOI : 10.1109/TAC.2016.2600158 ]
https://hal.archives-ouvertes.fr/hal-01145537

International Conferences with Proceedings

[7]
F. Alouges, A. Desimone, L. Giraldi, M. Zoppello.
Purcell magneto-elastic swimmer controlled by an external magnetic field, in: IFAC 2017 World Congress, Touluse, France, July 2017, vol. 50, no 1, pp. 4120-4125, https://arxiv.org/abs/1611.02020. [ DOI : 10.1016/j.ifacol.2017.08.798 ]
https://hal.archives-ouvertes.fr/hal-01393314
[8]
J.-B. Caillau, T. Dargent, F. Nicolau.
Approximation by filtering in optimal control and applications, in: IFAC 2017 World Congress. The 20th World Congress of the International Federation of Automatic Control, Toulouse, France, D. Dochain, D. Henrion, D. Peaucelle (editors), IFAC-PapersOnLine, Elsevier, July 2017, vol. 50, no 1, pp. 1649-1654. [ DOI : 10.1016/j.ifacol.2017.08.332 ]
https://hal.archives-ouvertes.fr/hal-01588465
[9]
T. Dargent, F. Nicolau, J.-B. Pomet.
Periodic averaging with a second order integral error, in: IFAC 2017 World Congress, Toulouse, France, D. Dochain (editor), July 2017, vol. 50, no 1, pp. 2892-2897. [ DOI : 10.1016/j.ifacol.2017.08.645 ]
https://hal.archives-ouvertes.fr/hal-01351613
[10]
J. Rouot, P. Bettiol, B. Bonnard, A. Nolot.
Optimal control theory and the efficiency of the swimming mechanism of the Copepod Zooplankton, in: IFAC 2017 World Congress. The 20th World Congress of the International Federation of Automatic Control, Toulouse, France, D. Dochain, D. Henrion, D. Peaucelle (editors), IFAC-PapersOnLine, Elsevier, July 2017, vol. 50, no 1, pp. 488-493. [ DOI : 10.1016/j.ifacol.2017.08.100 ]
https://hal.inria.fr/hal-01387423

Books or Proceedings Editing

[11]
M. Bergounioux, J.-B. Caillau, T. Haberkorn, G. Peyré, C. Schnörr (editors)
Variational methods in imaging and geometric control, Radon Series on Comput. and Applied Math., de Gruyter, January 2017, no 18.
https://hal.archives-ouvertes.fr/hal-01315508

Other Publications

[12]
C. Aldana, J.-B. Caillau, P. Freitas.
Maximal determinants of Schrödinger operators, December 2017, working paper or preprint.
https://hal.inria.fr/hal-01406270
[13]
Z. Badreddine.
Mass transportation on sub-Riemannian structures of rank two in dimension four, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01662926
[14]
Z. Badreddine, L. Rifford.
Measure contraction properties for two-step sub-Riemannian structures and medium-fat Carnot groups, December 2017, https://arxiv.org/abs/1712.09900 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01662544
[15]
T. Bakir, B. Bonnard, S. Othman.
Predictive control based on nonlinear observer for muscular force and fatigue model, September 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01591187
[16]
P. Bettiol, B. Bonnard, J. Rouot.
Optimal strokes at low Reynolds number: a geometric and numerical study of Copepod and Purcell swimmers, November 2017, working paper or preprint.
https://hal.inria.fr/hal-01326790
[17]
B. Bonnard, M. Chyba, J. Rouot.
Geometric and Numerical Optimal Control with Application to Swimming at Low Reynolds Number and Magnetic Resonance Imaging, January 2018, working paper or preprint.
https://hal.inria.fr/hal-01226734
[18]
B. Bonnard, O. Cots, J.-C. Faugère, A. Jacquemard, J. Rouot, M. Safey El Din, T. Verron.
Algebraic-geometric techniques for the feedback classification and robustness of the optimal control of a pair of Bloch equations with application to Magnetic Resonance Imaging, 2017, submitted.
https://hal.inria.fr/hal-01556806
[19]
J.-b. Caillau, M. Cerf, A. Sassi, E. Trélat, H. Zidani.
Solving chance constrained optimal control problems in aerospace via Kernel Density Estimation, April 2017, working paper or preprint.
https://hal.inria.fr/hal-01507063
[20]
J.-b. Caillau, J.-B. Pomet, J. Rouot.
Metric approximation of minimum time control systems , November 2017, working paper or preprint.
https://hal.inria.fr/hal-01672001
[21]
C. Gilet, M. Deprez, J.-B. Caillau, M. Barlaud.
Clustering with feature selection using alternating minimization. Application to computational biology, December 2017, working paper or preprint.
https://hal.inria.fr/hal-01671982
[22]
C. Moreau, L. Giraldi, H. Gadêlha.
A practical and efficient asymptotic coarse-graining model for the elastohydrodynamics of slender-rods and filaments, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01658670
[23]
M. Orieux, J.-B. Caillau, T. Combot, J. Fejoz.
Non-integrability of the minimum-time kepler problem , January 2018, working paper or preprint.
https://hal.inria.fr/hal-01679261
[24]
L. Rifford, A. Moameni.
Uniquely minimizing costs for the Kantorovitch problem, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01662537
[25]
L. Rifford, R. Ruggiero.
On the stability conjecture for geodesic flows of manifold without conjugate points, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01662529
References in notes
[26]
A. Agrachev, Y. Baryshnikov, A. Sarychev.
Ensemble controllability by Lie algebraic methods, in: ESAIM Control Optim. and Calc. Var., 2016, vol. 22, no 4, pp. 921–938.
[27]
A. A. Agrachev, C. Biolo.
Switching in Time-Optimal Problem: The 3D Case with 2D Control, in: J. Dyn. Control Syst., 2017.
http://dx.doi.org/10.1007/s10883-016-9342-7
[28]
A. A. Agrachev, R. V. Gamkrelidze.
Symplectic methods for optimization and control, in: Geometry of feedback and optimal control, Textbooks Pure Appl. Math., Marcel Dekker, 1998, vol. 207, pp. 19–77.
[29]
A. Agrachev, Y. L. Sachkov.
Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.
[30]
A. A. Agrachev, A. V. Sarychev.
Strong minimality of abnormal geodesics for 2-distributions, in: J. Dynam. Control Systems, 1995, vol. 1, no 2, pp. 139–176.
[31]
A. A. Agrachev, A. V. Sarychev.
Abnormal sub-Riemannian geodesics: Morse index and rigidity, in: Ann. Inst. H. Poincarré, Anal. non-linéaire, 1996, vol. 13, no 6, pp. 635-690.
[32]
V. I. Arnold.
Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 2nd, Springer-Verlag, New York, 1989, vol. 60, xvi+508 p, Translated from Russian by K. Vogtmann and A. Weinstein.
[33]
A. Belotto Da Silva, L. Rifford.
The Sard conjecture on Martinet surfaces, August 2016, Preprint, submitted to Duke Math. Journal.
https://hal.archives-ouvertes.fr/hal-01411456
[34]
A. Bombrun, J.-B. Pomet.
The averaged control system of fast oscillating control systems, in: SIAM J. Control Optim., 2013, vol. 51, no 3, pp. 2280-2305. [ DOI : 10.1137/11085791X ]
https://hal.inria.fr/hal-00648330
[35]
B. Bonnard, J.-B. Caillau.
Geodesic flow of the averaged controlled Kepler equation, in: Forum Mathematicum, September 2009, vol. 21, no 5, pp. 797–814.
http://dx.doi.org/10.1515/FORUM.2009.038
[36]
B. Bonnard, J.-B. Caillau.
Metrics with equatorial singularities on the sphere, in: Ann. Mat. Pura Appl., 2014, vol. 193, no 5, pp. 1353-1382. [ DOI : 10.1007/s10231-013-0333-y ]
https://hal.archives-ouvertes.fr/hal-00319299
[37]
B. Bonnard, J.-B. Caillau, O. Cots.
Energy minimization in two-level dissipative quantum control: The integrable case, in: Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Discrete Contin. Dyn. Syst., AIMS, 2011, vol. suppl., pp. 198–208.
[38]
B. Bonnard, J.-B. Caillau, L. Rifford.
Convexity of injectivity domains on the ellipsoid of revolution: the oblate case, in: C. R. Math. Acad. Sci. Paris, 2010, vol. 348, no 23-24, pp. 1315–1318. [ DOI : 10.1016/j.crma.2010.10.036 ]
https://hal.archives-ouvertes.fr/hal-00545768
[39]
B. Bonnard, J.-B. Caillau, R. Sinclair, M. Tanaka.
Conjugate and cut loci of a two-sphere of revolution with application to optimal control, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 4, pp. 1081–1098.
http://dx.doi.org/10.1016/j.anihpc.2008.03.010
[40]
B. Bonnard, J.-B. Caillau, E. Trélat.
Second order optimality conditions in the smooth case and applications in optimal control, in: ESAIM Control Optim. and Calc. Var., 2007, vol. 13, no 2, pp. 206–236.
[41]
B. Bonnard, M. Chyba.
Singular trajectories and their role in control theory, Mathématiques & Applications, Springer-Verlag, Berlin, 2003, vol. 40, xvi+357 p.
[42]
B. Bonnard, M. Chyba, J. Rouot, D. Takagi.
A Numerical Approach to the Optimal Control and Efficiency of the Copepod Swimmer, in: 55th IEEE Conference on Decision and Control - CDC, Las Vegas, United States, December 2016.
https://hal.inria.fr/hal-01286602
[43]
B. Bonnard, M. Chyba, J. Rouot, D. Takagi, R. Zou.
Optimal Strokes : a Geometric and Numerical Study of the Copepod Swimmer, January 2016, working paper or preprint.
https://hal.inria.fr/hal-01162407
[44]
B. Bonnard, M. Claeys, O. Cots, P. Martinon.
Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance, in: Acta Applicandae Mathematicae, February 2015, vol. 135, no 1, pp. pp.5-45. [ DOI : 10.1007/s10440-014-9947-3 ]
https://hal.inria.fr/hal-00867753
[45]
B. Bonnard, T. Combot, L. Jassionnesse.
Integrability methods in the time minimal coherence transfer for Ising chains of three spins, in: Discrete Contin. Dyn. Syst. - ser. A (DCDS-A), September 2015, vol. 35, no 9, pp. 4095-4114, 20 pages. [ DOI : 10.3934/dcds.2015.35.4095 ]
https://hal.archives-ouvertes.fr/hal-00969285
[46]
B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny, Y. Zhang.
Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance, in: IEEE Transactions on Automatic Control, August 2012, vol. 57, no 8, pp. 1957-1969. [ DOI : 10.1109/TAC.2012.2195859 ]
http://hal.archives-ouvertes.fr/hal-00750032/
[47]
B. Bonnard, H. Henninger, J. Nemcova, J.-B. Pomet.
Time Versus Energy in the Averaged Optimal Coplanar Kepler Transfer towards Circular Orbits, in: Acta Applicandae Math., 2015, vol. 135, no 2, pp. 47-80. [ DOI : 10.1007/s10440-014-9948-2 ]
https://hal.inria.fr/hal-00918633
[48]
B. Bonnard, A. Jacquemard, M. Chyba, J. Marriott.
Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance, in: Math. Control Relat. Fields (MCRF), 2013, vol. 3, no 4, pp. 397-432. [ DOI : 10.3934/mcrf.2013.3.397 ]
https://hal.inria.fr/hal-00939495
[49]
B. Bonnard, I. Kupka.
Théorie des singularités de l'application entrée-sortie et optimalité des trajectoires singulières dans le problème du temps minimal, in: Forum Math., 1993, vol. 5, pp. 111–159.
[50]
B. Bonnard, D. Sugny.
Optimal Control with Applications in Space and Quantum Dynamics, AIMS Series on Applied Mathematics, AIMS, 2012, vol. 5.
[51]
J.-B. Caillau, O. Cots, J. Gergaud.
Differential pathfollowing for regular optimal control problems, in: Optim. Methods Softw., 2012, vol. 27, no 2, pp. 177–196.
[52]
J.-B. Caillau, B. Daoud.
Minimum time control of the restricted three-body problem, in: SIAM J. Control Optim., 2012, vol. 50, no 6, pp. 3178–3202.
[53]
J.-B. Caillau, A. Farrés.
On local optima in minimum time control of the restricted three-body problem, in: Recent Advances in Celestial and Space Mechanics, Springer, April 2016, vol. Mathematics for Industry, no 23, pp. 209-302. [ DOI : 10.1007/978-3-319-27464-5 ]
https://hal.archives-ouvertes.fr/hal-01260120
[54]
J.-B. Caillau, C. Royer.
On the injectivity and nonfocal domains of the ellipsoid of revolution, in: Geometric Control Theory and Sub-Riemannian Geometry, G. Stefani (editor), INdAM series, Springer, 2014, vol. 5, pp. 73-85. [ DOI : 10.1007/978-3-319-02132-4 ]
https://hal.archives-ouvertes.fr/hal-01315530
[55]
F. Chazal, D. Cohen-Steiner, Q. Mérigot.
Geometric Inference for Probability Measures, in: Found. Comput. Math., 2011, vol. 11, pp. 733–751. [ DOI : 10.1007/s10208-011-9098-0 ]
http://hal.inria.fr/inria-00383685
[56]
Z. Chen, J.-B. Caillau, Y. Chitour.
L1-minimization for mechanical systems, in: SIAM J. Control Optim., May 2016, vol. 54, no 3, pp. 1245-1265. [ DOI : 10.1137/15M1013274 ]
https://hal.archives-ouvertes.fr/hal-01136676
[57]
T. Dargent.
Averaging technique in T_3D an integrated tool for continuous thrust optimal control in orbit transfers, in: 4th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, New Mexico, January 2014.
[58]
T. Dargent.
Initial and final boundaries transformation when solving optimal control problem with averaging techniques and application to low-thrust orbit transfer, 2015, Preprint.
[59]
L. Faubourg, J.-B. Pomet.
Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems, in: ESAIM Control Optim. Calc. Var., 2000, vol. 5, pp. 293-311. [ DOI : 10.1051/cocv:2000112 ]
http://www.numdam.org/item/COCV_2000__5__293_0
[60]
A. Figalli, T. Gallouët, L. Rifford.
On the convexity of injectivity domains on nonfocal manifolds, in: SIAM J. Math. Anal., 2015, vol. 47, no 2, pp. 969–1000. [ DOI : 10.1137/140961821 ]
https://hal.inria.fr/hal-00968354
[61]
A. Figalli, L. Rifford, C. Villani.
Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, in: Tohoku Math. J., 2011, vol. 63, no 4, pp. 855-876.
http://hal.inria.fr/hal-00923320v1
[62]
M. Fliess, J. Lévine, P. Martin, P. Rouchon.
Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples, in: Internat. J. Control, 1995, vol. 61, pp. 1327–1361.
[63]
C. Gavriel, R. Vinter.
Second order sufficient conditions for optimal control problems with non-unique minimizers: an abstract framework, in: Appl. Math. Optim., 2014, vol. 70, no 3, pp. 411–442.
http://dx.doi.org/10.1007/s00245-014-9245-5
[64]
A. Hindawi, J.-B. Pomet, L. Rifford.
Mass transportation with LQ cost functions, in: Acta Appl. Math., 2011, vol. 113, pp. 215–229.
[65]
R. McCann, L. Rifford.
The intrinsic dynamics of optimal transport, in: Journal de l'École Polytechnique - Mathématiques, 2016, vol. 3, pp. 67-98. [ DOI : 10.5802/jep.29 ]
https://hal.archives-ouvertes.fr/hal-01336327
[66]
R. Montgomery.
A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2002, vol. 91, xx+259 p.
[67]
J.-M. Morel, F. Santambrogio.
Comparison of distances between measures, in: Appl. Math. Lett., 2007, vol. 20, no 4, pp. 427–432.
http://dx.doi.org/10.1016/j.aml.2006.05.009
[68]
E. A. Nadaraya.
On non-parametric estimates of density functions and regression curves, in: Theory Probab. Appl., 1965, vol. 10, no 1, pp. 186–190.
[69]
J.-B. Pomet.
A necessary condition for dynamic equivalence, in: SIAM J. on Control and Optimization, 2009, vol. 48, pp. 925-940. [ DOI : 10.1137/080723351 ]
http://hal.inria.fr/inria-00277531
[70]
L. S. Pontryagin, V. G. Boltjanskiĭ, R. V. Gamkrelidze, E. Mitchenko.
Théorie mathématique des processus optimaux, Editions MIR, Moscou, 1974.
[71]
E. M. Purcell.
Life at low Reynolds number, in: American journal of physics, 1977, vol. 45, no 1, pp. 3–11.
[72]
L. Rifford.
Stratified semiconcave control-Lyapunov functions and the stabilization problem, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2005, vol. 22, no 3, pp. 343–384.
http://dx.doi.org/10.1016/j.anihpc.2004.07.008
[73]
J. A. Sanders, F. Verhulst, J. Murdock.
Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, Second, Springer, New York, 2007, vol. 59, xxii+431 p.
[74]
J. A. Sanders, F. Verhulst.
Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Springer-Verlag, 1985, vol. 56.
[75]
A. V. Sarychev.
The index of second variation of a control system, in: Mat. Sb., 1982, vol. 41, pp. 338–401.
[76]
D. Takagi.
Swimming with stiff legs at low Reynolds number, in: Phys. Rev. E, 2015, vol. 92, 023020 p.
http://link.aps.org/doi/10.1103/PhysRevE.92.023020
[77]
E. Trélat, E. Zuazua.
The turnpike property in finite-dimensional nonlinear optimal control, in: J. Differential Equations, 2015, vol. 258, no 1, pp. 81–114.
http://dx.doi.org/10.1016/j.jde.2014.09.005
[78]
W. Van Ackooij, R. Henrion.
Gradient formulae for nonlinear probabilistic constraints with gaussian and gaussian-like distributions, in: SIAM J. Optim., 2014, vol. 24, no 4, pp. 1864–1889.
[79]
R. Vinter.
Optimal control, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., 2000.
http://dx.doi.org/10.1007/978-0-8176-8086-2