Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Probabilistic Analysis of Geometric Data Structures and Algorithms

Participants : Olivier Devillers, Charles Duménil.

Delaunay triangulation of a random sample of a good sample has linear size

A good sample is a point set such that any ball of radius ϵ contains a constant number of points. The Delaunay triangulation of a good sample is proved to have linear size, unfortunately this is not enough to ensure a good time complexity of the randomized incremental construction of the Delaunay triangulation. In this paper we prove that a random Bernoulli sample of a good sample has a triangulation of linear size. This result allows to prove that the randomized incremental construction needs an expected linear size and an expected O(nlogn) time [8].

This work was done in collaboration with Marc Glisse (Project-team Datashape ).

Delaunay triangulation of a random sampling of a generic surface

The complexity of the Delaunay triangulation of n points distributed on a surface ranges from linear to quadratic. We prove that when the points are evenly distributed on a smooth compact generic surface the expected size of the Delaunay triangulation is O(n). This result has to be compared with a bound of O(nlogn) when the points are a deterministic good sample of the surface under the same hypotheses on the surface [13].