Personnel
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

[1]
Y. Bouzidi, T. Cluzeau, G. Moroz, A. Quadrat.
Computing effectively stabilizing controllers for a class of nD systems, in: IFAC-PapersOnLine, July 2017, vol. 50, no 1, pp. 1847 - 1852. [ DOI : 10.1016/j.ifacol.2017.08.200 ]
https://hal.archives-ouvertes.fr/hal-01667161
[2]
O. Devillers, M. Karavelas, M. Teillaud.
Qualitative Symbolic Perturbation: Two Applications of a New Geometry-based Perturbation Framework, in: Journal of Computational Geometry, 2017, vol. 8, no 1, pp. 282–315. [ DOI : 10.20382/jocg.v8i1a11 ]
https://hal.inria.fr/hal-01586511
[3]
S. Lazard, M. Pouget, F. Rouillier.
Bivariate triangular decompositions in the presence of asymptotes, in: Journal of Symbolic Computation, 2017, vol. 82, pp. 123 - 133. [ DOI : 10.1016/j.jsc.2017.01.004 ]
https://hal.inria.fr/hal-01468796
[4]
P. Machado Manhães De Castro, O. Devillers.
Expected Length of the Voronoi Path in a High Dimensional Poisson-Delaunay Triangulation, in: Discrete and Computational Geometry, 2017, pp. 1–20. [ DOI : 10.1007/s00454-017-9866-y ]
https://hal.inria.fr/hal-01477030

International Conferences with Proceedings

[5]
I. Iordanov, M. Teillaud.
Implementing Delaunay Triangulations of the Bolza Surface, in: 33rd International Symposium on Computational Geometry (SoCG 2017), Brisbane, Australia, July 2017, pp. 44:1 – 44:15. [ DOI : 10.4230/LIPIcs.SoCG.2017.44 ]
https://hal.inria.fr/hal-01568002
[6]
S. Lazard, W. Lenhart, G. Liotta.
On the Edge-length Ratio of Outerplanar Graphs, in: International Symposium on Graph Drawing and Network Visualization, Boston, United States, 2017.
https://hal.inria.fr/hal-01591699

Internal Reports

[7]
L. Castelli Aleardi, O. Devillers.
Explicit array-based compact data structures for triangulations: practical solutions with theoretical guarantees, Inria, 2017, no RR-7736, 39 p.
https://hal.inria.fr/inria-00623762
[8]
O. Devillers, M. Glisse.
Delaunay triangulation of a random sample of a good sample has linear size, Inria Saclay Ile de France ; Inria Nancy - Grand Est, July 2017, no RR-9082, 6 p.
https://hal.inria.fr/hal-01568030
[9]
R. Imbach, G. Moroz, M. Pouget.
Reliable location with respect to the projection of a smooth space curve, Inria, November 2017.
https://hal.archives-ouvertes.fr/hal-01632344
[10]
W. Kuijper, V. Ermolaev, O. Devillers.
Celestial Walk: A Terminating Oblivious Walk for Convex Subdivisions, Inria Nancy, 2017, no RR-9099, https://arxiv.org/abs/1710.01620.
https://hal.inria.fr/hal-01610205

Other Publications

[11]
L. C. Aleardi, O. Devillers, E. Fusy.
Canonical ordering for graphs on the cylinder, with applications to periodic straight-line drawings on the flat cylinder and torus, 2017, https://arxiv.org/abs/1206.1919 - 37 pages.
https://hal.inria.fr/hal-01646724
[12]
D. Bremner, O. Devillers, M. Glisse, S. Lazard, G. Liotta, T. Mchedlidze, G. Moroz, S. Whitesides, S. Wismath.
Monotone Simultaneous Paths Embeddings in d, May 2017, working paper or preprint.
https://hal.inria.fr/hal-01529154
References in notes
[13]
D. Attali, J.-D. Boissonnat, A. Lieutier.
Complexity of the Delaunay triangulation of points on surfaces: the smooth case, in: Proceedings of the 19th Annual Symposium on Computational Geometry, 2003, pp. 201–210. [ DOI : 10.1145/777792.777823 ]
http://dl.acm.org/citation.cfm?id=777823
[14]
F. Aurenhammer, R. Klein, D. Lee.
Voronoi diagrams and Delaunay triangulations, World Scientific, 2013.
http://www.worldscientific.com/worldscibooks/10.1142/8685
[15]
M. Bogdanov, O. Devillers, M. Teillaud.
Hyperbolic Delaunay complexes and Voronoi diagrams made practical, in: Journal of Computational Geometry, 2014, vol. 5, pp. 56–85.
[16]
M. Bogdanov, M. Teillaud.
Delaunay triangulations and cycles on closed hyperbolic surfaces, Inria, December 2013, no RR-8434.
https://hal.inria.fr/hal-00921157
[17]
J.-D. Boissonnat, O. Devillers, S. Hornus.
Incremental construction of the Delaunay graph in medium dimension, in: Proceedings of the 25th Annual Symposium on Computational Geometry, 2009, pp. 208–216.
http://hal.inria.fr/inria-00412437/
[18]
J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, M. Yvinec.
Applications of random sampling to on-line algorithms in computational geometry, in: Discrete and Computational Geometry, 1992, vol. 8, pp. 51–71.
http://hal.inria.fr/inria-00090675
[19]
Y. Bouzidi, S. Lazard, G. Moroz, M. Pouget, F. Rouillier, M. Sagraloff.
Improved algorithms for solving bivariate systems via Rational Univariate Representations, Inria, February 2015, 50 p.
https://hal.inria.fr/hal-01114767
[20]
Y. Bouzidi, S. Lazard, M. Pouget, F. Rouillier.
Separating linear forms and Rational Univariate Representations of bivariate systems, in: Journal of Symbolic Computation, May 2015, vol. 68, pp. 84-119. [ DOI : 10.1016/j.jsc.2014.08.009 ]
https://hal.inria.fr/hal-00977671
[21]
P. Calka.
Tessellations, convex hulls and Boolean model: some properties and connections, Université René Descartes - Paris V, 2009, Habilitation à diriger des recherches.
https://tel.archives-ouvertes.fr/tel-00448249
[22]
M. Caroli, P. M. M. de Castro, S. Loriot, O. Rouiller, M. Teillaud, C. Wormser.
Robust and Efficient Delaunay Triangulations of Points on or Close to a Sphere, in: Proceedings of the 9th International Symposium on Experimental Algorithms, Lecture Notes in Computer Science, 2010, vol. 6049, pp. 462–473.
http://hal.inria.fr/inria-00405478/
[23]
M. Caroli, M. Teillaud.
3D Periodic Triangulations, in: CGAL User and Reference Manual, CGAL Editorial Board, 2009. [ DOI : 10.1007/978-3-642-04128-0_6 ]
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic3Triangulation3Summary
[24]
M. Caroli, M. Teillaud.
Computing 3D Periodic Triangulations, in: Proceedings of the 17th European Symposium on Algorithms, Lecture Notes in Computer Science, 2009, vol. 5757, pp. 59–70.
[25]
M. Caroli, M. Teillaud.
Delaunay Triangulations of Point Sets in Closed Euclidean d-Manifolds, in: Proceedings of the 27th Annual Symposium on Computational Geometry, 2011, pp. 274–282. [ DOI : 10.1145/1998196.1998236 ]
https://hal.inria.fr/hal-01101094
[26]
B. Chazelle.
Application challenges to computational geometry: CG impact task force report, in: Advances in Discrete and Computational Geometry, Providence, B. Chazelle, J. E. Goodman, R. Pollack (editors), Contemporary Mathematics, American Mathematical Society, 1999, vol. 223, pp. 407–463.
[27]
P. Chossat, G. Faye, O. Faugeras.
Bifurcation of hyperbolic planforms, in: Journal of Nonlinear Science, 2011, vol. 21, pp. 465–498.
http://link.springer.com/article/10.1007/s00332-010-9089-3
[28]
V. Damerow, C. Sohler.
Extreme points under random noise, in: Proceedings of the 12th European Symposium on Algorithms, 2004, pp. 264–274.
http://dx.doi.org/10.1007/978-3-540-30140-0_25
[29]
O. Devillers.
The Delaunay hierarchy, in: International Journal of Foundations of Computer Science, 2002, vol. 13, pp. 163-180.
https://hal.inria.fr/inria-00166711
[30]
O. Devillers, M. Glisse, X. Goaoc.
Complexity analysis of random geometric structures made simpler, in: Proceedings of the 29th Annual Symposium on Computational Geometry, June 2013, pp. 167-175. [ DOI : 10.1145/2462356.2462362 ]
https://hal.inria.fr/hal-00833774
[31]
O. Devillers, M. Glisse, X. Goaoc, R. Thomasse.
On the smoothed complexity of convex hulls, in: Proceedings of the 31st International Symposium on Computational Geometry, Lipics, 2015. [ DOI : 10.4230/LIPIcs.SOCG.2015.224 ]
https://hal.inria.fr/hal-01144473
[32]
L. Dupont, D. Lazard, S. Lazard, S. Petitjean.
Near-optimal parameterization of the intersection of quadrics: I. The generic algorithm, in: Journal of Symbolic Computation, 2008, vol. 43, no 3, pp. 168–191. [ DOI : 10.1016/j.jsc.2007.10.006 ]
http://hal.inria.fr/inria-00186089/en
[33]
L. Dupont, D. Lazard, S. Lazard, S. Petitjean.
Near-optimal parameterization of the intersection of quadrics: II. A classification of pencils, in: Journal of Symbolic Computation, 2008, vol. 43, no 3, pp. 192–215. [ DOI : 10.1016/j.jsc.2007.10.012 ]
http://hal.inria.fr/inria-00186090/en
[34]
L. Dupont, D. Lazard, S. Lazard, S. Petitjean.
Near-Optimal Parameterization of the Intersection of Quadrics: III. Parameterizing Singular Intersections, in: Journal of Symbolic Computation, 2008, vol. 43, no 3, pp. 216–232. [ DOI : 10.1016/j.jsc.2007.10.007 ]
http://hal.inria.fr/inria-00186091/en
[35]
M. Glisse, S. Lazard, J. Michel, M. Pouget.
Silhouette of a random polytope, in: Journal of Computational Geometry, 2016, vol. 7, no 1, 14 p.
https://hal.inria.fr/hal-01289699
[36]
M. Hemmer, L. Dupont, S. Petitjean, E. Schömer.
A complete, exact and efficient implementation for computing the edge-adjacency graph of an arrangement of quadrics, in: Journal of Symbolic Computation, 2011, vol. 46, no 4, pp. 467-494. [ DOI : 10.1016/j.jsc.2010.11.002 ]
https://hal.inria.fr/inria-00537592
[37]
J. Hidding, R. van de Weygaert, G. Vegter, B. J. Jones, M. Teillaud.
Video: the sticky geometry of the cosmic web, in: Proceedings of the 28th Annual Symposium on Computational Geometry, 2012, pp. 421–422.
[38]
J. B. Hough, M. Krishnapur, Y. Peres, B. Virág.
Determinantal processes and independence, in: Probab. Surv., 2006, vol. 3, pp. 206-229.
[39]
R. Imbach, G. Moroz, M. Pouget.
Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space Curve, in: Proceedings of the 6th International Conferences on Mathematical Aspects of Computer and Information Sciences, Springer LNCS, 2015.
https://hal.inria.fr/hal-01239447
[40]
S. Lazard, L. M. Peñaranda, S. Petitjean.
Intersecting quadrics: an efficient and exact implementation, in: Computational Geometry: Theory and Applications, 2006, vol. 35, no 1-2, pp. 74–99.
[41]
S. Lazard, M. Pouget, F. Rouillier.
Bivariate triangular decompositions in the presence of ssymptotes, Inria, September 2015.
https://hal.inria.fr/hal-01200802
[42]
M. Mazón, T. Recio.
Voronoi diagrams on orbifolds, in: Computational Geometry: Therory and Applications, 1997, vol. 8, pp. 219–230.
[43]
A. Pellé, M. Teillaud.
Periodic meshes for the CGAL library, 2014, International Meshing Roundtable, Research Note.
https://hal.inria.fr/hal-01089967
[44]
G. Rong, M. Jin, X. Guo.
Hyperbolic centroidal Voronoi tessellation, in: Proceedings of the ACM Symposium on Solid and Physical Modeling, 2010, pp. 117–126.
http://dx.doi.org/10.1145/1839778.1839795
[45]
A. Rényi, R. Sulanke.
Über die konvexe Hülle von n zufällig gerwähten Punkten I, in: Z. Wahrsch. Verw. Gebiete, 1963, vol. 2, pp. 75–84. [ DOI : 10.1007/BF00535300 ]
http://www.springerlink.com/content/t5005k86665u24g0/
[46]
A. Rényi, R. Sulanke.
Über die konvexe Hülle von n zufällig gerwähten Punkten II, in: Z. Wahrsch. Verw. Gebiete, 1964, vol. 3, pp. 138–147. [ DOI : 10.1007/BF00535973 ]
http://www.springerlink.com/content/n3003x44745pp689/
[47]
F. Sausset, G. Tarjus, P. Viot.
Tuning the fragility of a glassforming liquid by curving space, in: Physical Review Letters, 2008, vol. 101, pp. 155701(1)–155701(4).
http://dx.doi.org/10.1103/PhysRevLett.101.155701
[48]
M. Schindler, A. C. Maggs.
Cavity averages for hard spheres in the presence of polydispersity and incomplete data, in: The European Physical Journal E, 2015, pp. 38–97.
http://dx.doi.org/10.1103/PhysRevE.88.022315
[49]
M. Schmitt, M. Teillaud.
Meshing the hyperbolic octagon, Inria, 2012, no 8179.
http://hal.inria.fr/hal-00764965
[50]
D. A. Spielman, S.-H. Teng.
Smoothed analysis: why the simplex algorithm usually takes polynomial time, in: Journal of the ACM, 2004, vol. 51, pp. 385 - 463.
http://dx.doi.org/10.1145/990308.990310
[51]
M. Teillaud.
Towards dynamic randomized algorithms in computational geometry, Lecture Notes Comput. Sci., Springer-Verlag, 1993, vol. 758. [ DOI : 10.1007/3-540-57503-0 ]
http://www.springer.com/gp/book/9783540575030
[52]
R. van de Weygaert, G. Vegter, H. Edelsbrunner, B. J. Jones, P. Pranav, C. Park, W. A. Hellwing, B. Eldering, N. Kruithof, E. Bos, J. Hidding, J. Feldbrugge, E. ten Have, M. van Engelen, M. Caroli, M. Teillaud.
Alpha, Betti and the megaparsec universe: on the homology and topology of the cosmic web, in: Transactions on Computational Science XIV, Lecture Notes in Computer Science, Springer-Verlag, 2011, vol. 6970, pp. 60–101. [ DOI : 10.1007/978-3-642-25249-5_3 ]
http://www.springerlink.com/content/334357373166n902/