Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Dense and Low-Rank Gaussian CRFs Using Deep Embeddings

Participants: Siddhartha Chandra, Iasonas Kokkinos

In this work we introduce a structured prediction model that endows the Deep Gaussian Conditional Random Field (G-CRF) with a densely connected graph structure. We keep memory and computational complexity under control by expressing the pairwise interactions as inner products of low-dimensional, learnable embeddings. The G-CRF system matrix is therefore low-rank, allowing us to solve the resulting system in a few milliseconds on the GPU by using conjugate gradient. As in G-CRF, inference is exact, the unary and pairwise terms are jointly trained end-to-end by using analytic expressions for the gradients, while we also develop even faster, Potts-type variants of our embeddings. We show that the learned embeddings capture pixel-to-pixel affinities in a task-specific manner, while our approach achieves state of the art results on three challenging benchmarks, namely semantic segmentation, human part segmentation, and saliency estimation. This work was published in [30].