Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

Hamilton-Jacobi-Bellman approach

This approach consists in calculating the value function associated with the optimal control problem, and then synthesizing the feedback control and the optimal trajectory using Pontryagin's principle. The method has the great particular advantage of reaching directly the global optimum, which can be very interesting when the problem is not convex.

Optimal stochastic control problems occur when the dynamical system is uncertain. A decision typically has to be taken at each time, while realizations of future events are unknown (but some information is given on their distribution of probabilities). In particular, problems of economic nature deal with large uncertainties (on prices, production and demand). Specific examples are the portfolio selection problems in a market with risky and non-risky assets, super-replication with uncertain volatility, management of power resources (dams, gas). Air traffic control is another example of such problems.

For solving stochastic control problems, we studied the so-called Generalized Finite Differences (GFD), that allow to choose at any node, the stencil approximating the diffusion matrix up to a certain threshold [27]. Determining the stencil and the associated coefficients boils down to a quadratic program to be solved at each point of the grid, and for each control. This is definitely expensive, with the exception of special structures where the coefficients can be computed at low cost. For two dimensional systems, we designed a (very) fast algorithm for computing the coefficients of the GFD scheme, based on the Stern-Brocot tree [26].