Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Software and Platforms


Keywords: 2D - Magnetic fusion - Plasma physics

Functional Description: In Tokamaks, at the slow resistive diffusion time scale, the magnetic configuration in the plasma can be described by the MHD equilibirum equations inside the plasma and the Maxwell equations outside. Moreover, the magnetic field is often supposed not to depend on the azimutal angle.

Under this assumption of axisymmetric configuration, the equilibrium in the whole space reduces to solving a 2D problem in which the magnetic field in the plasma is described by the well known Grad Shafranov equation. The unknown of this problem is the poloidal magnetic flux. The P1 finite element code CEDRES++ solves this free boundary equilibrium problem in direct and inverse mode. The direct problem consists in the computation of the magnetic configuration and of the plasma boundary, given a plasma current density profile and the total current in each poloidal field coils (PF coils). The aim of the inverse problem is to find currents in the PF coils in order to best fit a given plasma shape.