Members
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

[1]
M. Massaro.
Numerical methods for plasmas on massively parallel architectures, Université de Strasbourg, IRMA UMR 7501, December 2016.
https://tel.archives-ouvertes.fr/tel-01410049

Articles in International Peer-Reviewed Journals

[2]
C. Buet, B. Després, E. Franck, T. Leroy.
Proof of uniform convergence for a cell-centered AP discretization of the hyperbolic heat equation on general meshes, in: Mathematics of Computation, September 2016.
https://hal.archives-ouvertes.fr/hal-00956573
[3]
F. Casas, N. Crouseilles, E. Faou, M. Mehrenberger.
High-order Hamiltonian splitting for Vlasov-Poisson equations, in: Numerische Mathematik, 2016.
https://hal.inria.fr/hal-01206164
[4]
E. Chacon-Golcher, S. A. Hirstoaga, M. Lutz.
Optimization of Particle-In-Cell simulations for Vlasov-Poisson system with strong magnetic field, in: ESAIM: Proceedings and Surveys, 2016, vol. 53, pp. 177-190. [ DOI : 10.1051/proc/201653011 ]
https://hal.archives-ouvertes.fr/hal-01231444
[5]
D. Coulette, S. A. Hirstoaga, G. Manfredi.
Effect of collisional temperature isotropisation on ELM parallel transport in a tokamak scrape-off layer, in: Plasma Physics and Controlled Fusion, July 2016, vol. 58, no 8, 085004.
https://hal.inria.fr/hal-01399230
[6]
D. Coulette, G. Manfredi.
Kinetic simulations of the Chodura and Debye sheaths for magnetic fields with grazing incidence, in: Plasma Physics and Controlled Fusion, 2016, vol. 58, no 2, 25008. [ DOI : 10.1088/0741-3335/58/2/025008 ]
https://hal.archives-ouvertes.fr/hal-01402204
[7]
E. Franck, L. S. Mendoza.
Finite volume scheme with local high order discretization of Hydrostatic equilibrium for Euler equations with external forces, in: Journal of Scientific Computing, October 2016.
https://hal.inria.fr/hal-01114437
[8]
A. Hamiaz, M. Mehrenberger, H. Sellama, E. Sonnendrücker.
The semi-Lagrangian method on curvilinear grids, in: Communications in Applied and Industrial Mathematics, 2016.
https://hal.archives-ouvertes.fr/hal-01213366
[9]
P. Helluy, O. Hurisse, E. Le Coupanec.
Verification of a two-phase flow code based on an homogeneous model, in: International Journal on Finite Volumes, November 2016, vol. 13.
https://hal.archives-ouvertes.fr/hal-01396200

Conferences without Proceedings

[10]
D. Coulette, G. Manfredi, S. A. Hirstoaga.
Kinetic modeling and numerical simulation of plasma-wall interactions in magnetic fusion devices, in: 43rd European Physical Society Conference on Plasma Physics, Leuwen , Belgium, July 2016.
https://hal.archives-ouvertes.fr/hal-01402210

Scientific Books (or Scientific Book chapters)

[11]
P. Helluy, T. Strub, M. Massaro, M. Roberts.
Asynchronous OpenCL/MPI numerical simulations of conservation laws, in: Software for Exascale Computing - SPPEXA 2013-2015, H.-J. Bungartz, P. Neumann, W. E. Nagel (editors), Springer International Publishing, 2016, pp. 547–565. [ DOI : 10.1007/978-3-319-40528-5_25 ]
https://hal.archives-ouvertes.fr/hal-01134222

Other Publications

[12]
C. Courtès, E. Franck, P. Helluy, H. Oberlin.
Study of Physics-Based preconditioning with High-order Galerkin discretization for hyperbolic wave problems, November 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01401547
[13]
P. Helluy.
Stability analysis of an implicit lattice Boltzmann scheme, 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01403759
[14]
G. Latu, M. Mehrenberger, Y. Güçlü, M. Ottaviani, E. Sonnendrücker.
Field-aligned interpolation for semi-Lagrangian gyrokinetic simulations, May 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01315889
References in notes
[15]
C. Altmann, T. Belat, M. Gutnic, P. Helluy, H. Mathis, E. Sonnendrücker, W. Angulo, J.-M. Hérard.
A local time-stepping Discontinuous Galerkin algorithm for the MHD system, in: Modélisation et Simulation de Fluides Complexes - CEMRACS 2008, Marseille, France, July 2009. [ DOI : 10.1051/proc/2009038 ]
https://hal.inria.fr/inria-00594611
[16]
T. Barth.
On the role of involutions in the discontinous Galerkin discretization of Maxwell and magnetohydrodynamic systems, in: IMA Vol. Math. Appl., 2006, vol. 142, pp. 69–88.
[17]
A. Crestetto, P. Helluy.
Resolution of the Vlasov-Maxwell system by PIC Discontinuous Galerkin method on GPU with OpenCL, in: CEMRACS'11, France, EDP Sciences, 2011, vol. 38, pp. 257–274. [ DOI : 10.1051/proc/201238014 ]
https://hal.archives-ouvertes.fr/hal-00731021
[18]
N. Crouseilles, E. Frénod, S. A. Hirstoaga, A. Mouton.
Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field, in: Mathematical Models and Methods in Applied Sciences, 2013, vol. 23, no 08, pp. 1527–1559. [ DOI : 10.1142/S0218202513500152. ]
https://hal.archives-ouvertes.fr/hal-00638617
[19]
B. Eliasson.
Outflow boundary conditions for the Fourier transformed one-dimensional Vlasov-Poisson system, in: J. Sci. Comput., 2001, vol. 1, pp. 1–28.
[20]
E. Frenod, F. Salvarani, E. Sonnendrücker.
Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, in: Mathematical Models and Methods in Applied Sciences, 2009, vol. 19, no 2, pp. 175-197, ACM 82D10 35B27 76X05.
http://hal.archives-ouvertes.fr/hal-00180700/en/
[21]
V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, L. Villard.
A drift-kinetic Semi-Lagrangian 4D Vlasov code for ion turbulence simulation, in: J. of Comput. Phys., 2006, vol. 217, 395 p.
[22]
D. Hatch, D. Del-Castillo-Negrete, P. Terry.
Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition, in: Journal of Computational Physics, 2012, vol. 231, pp. 4234–4256.
[23]
C. Hauck, C.-D. Levermore.
Convex Duality and Entropy-Based Moment Closures: Characterizing Degenerate Densities, in: SIAM J. Control Optim., 2008, vol. 47, pp. 1977–2015.
[24]
C.-D. Levermore.
Entropy-based moment closures for kinetic equations, in: Transport Theory Statist. Phys., 1997, vol. 26, no 4-5, pp. 591–606.
[25]
J. Malmberg, C. Wharton.
Collisionless damping of electrostatic plasma waves, in: Phys. Rev. Lett., 1964, vol. 13, no 6, pp. 184–186.
[26]
C. Mouhot, C. Villani.
On Landau damping, in: Acta Mathematica, 2011, vol. 207, pp. 29-201.
[27]
E. Sonnendrücker, J.-R. Roche, P. Bertrand, A. Ghizzo.
The semi-Lagrangian method for the numerical resolution of the Vlasov equation, in: J. Comput. Phys., 1999, vol. 149, no 2, pp. 201–220.
[28]
E. Tadmor.
Entropy conservative finite element schemes, in: Numerical methods for Compressible Flows, Finite Difference Element and Volume Techniques, T. E. Tezduyar, T. J. R. Hughes (editors), Proc. Winter Annual Meeting, Amer. Soc. Mech. Eng, AMD- Vol. 78, 1986, 149 p.