Members
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
M. Bergmann, C. Bruneau, A. Iollo.
Enablers for robust POD models, in: J. Comput. Phys., 2009, vol. 228, no 2, pp. 516–538.
[2]
M. Bergmann, A. Iollo.
Modeling and simulation of fish-like swimming, in: Journal of Computational Physics, 2011, vol. 230, no 2, pp. 329 - 348.
[3]
M. Bergmann, A. Iollo.
Bioinspired swimming simulations, in: Journal of Computational Physics, 2016, vol. 323, pp. 310 - 321.
[4]
M. Bergmann, A. Iollo, R. Mittal.
Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer, in: Bioinspiration & Biomimetics, 2014, vol. 9, no 4, 046001.
[5]
F. Bernard, A. Iollo, G. Puppo.
Accurate Asymptotic Preserving Boundary Conditions for Kinetic Equations on Cartesian Grids, in: Journal of Scientific Computing, 2015, 34 p.
[6]
A. Bouharguane, A. Iollo, L. Weynans.
Numerical solution of the Monge–Kantorovich problem by density lift-up continuation, in: ESAIM: Mathematical Modelling and Numerical Analysis, November 2015, vol. 49, no 6, 1577.
[7]
A. De Brauer, A. Iollo, T. Milcent.
A Cartesian Scheme for Compressible Multimaterial Models in 3D, in: Journal of Computational Physics, 2016, vol. 313, pp. 121-143.
[8]
F. Luddens, M. Bergmann, L. Weynans.
Enablers for high-order level set methods in fluid mechanics, in: International Journal for Numerical Methods in Fluids, December 2015, vol. 79, pp. 654-675.
[9]
T. Meuel, Y. L. Xiong, P. Fischer, C.-H. Bruneau, M. Bessafi, H. Kellay.
Intensity of vortices: from soap bubbles to hurricanes, in: Scientific Reports, December 2013, vol. 3, pp. 3455 (1-7).
[10]
Y. L. Xiong, C.-H. Bruneau, H. Kellay.
A numerical study of two dimensional flows past a bluff body for dilute polymer solutions, in: Journal of Non-Newtonian Fluid Mechanics, 2013, vol. 196, pp. 8-26.
Publications of the year

Articles in International Peer-Reviewed Journals

[11]
M. Bergmann, A. Iollo.
Bioinspired swimming simulations, in: Journal of Computational Physics, 2016, vol. 323, pp. 310 - 321. [ DOI : 10.1016/j.jcp.2016.07.022 ]
https://hal.inria.fr/hal-01405039
[12]
C.-H. Bruneau, K. Khadra.
Highly Parallel Computing of a Multigrid Solver for 3D Navier-Stokes equations, in: Journal of Computational Science, 2016, vol. 17, no 1.
https://hal.inria.fr/hal-01247678
[13]
A. De Brauer, A. Iollo, T. Milcent.
A Cartesian Scheme for Compressible Multimaterial Models in 3D, in: Journal of Computational Physics, 2016, vol. 313, pp. 121-143. [ DOI : 10.1016/j.jcp.2016.02.032 ]
https://hal.inria.fr/hal-01405322
[14]
J. Pinilla, C.-H. Bruneau, S. Tancogne.
Front-tracking by the level-set and the volume penalization methods in a two-phase microfluidic network, in: International Journal for Numerical Methods in Fluids, January 2016, vol. 80, no 1, pp. 23-52. [ DOI : 10.1002/fld.4069 ]
https://hal.inria.fr/hal-01251457

Invited Conferences

[15]
M. Bergmann, A. Ferrero, A. Iollo.
Different approaches to the development of reduced-order models for NS equations, in: ALOP Workshop: Reduced Order Models in Optimization, Trier, Germany, September 2016.
https://hal.inria.fr/hal-01405487
[16]
A. Iollo.
Numerical modeling of multi-physics phenomena on cartesian and hierarchical grids , in: Workshop on Multiscale Modeling and its Applications: From Weather and Climate Models to Models of Materials Defects, Toronto, Canada, The Fields Institute, April 2016.
https://hal.inria.fr/hal-01410162
[17]
A. Iollo.
Numerical modeling of multi-physics phenomena on cartesian and hierarchical grids , in: La mécanique des fluides numérique, Paris, France, Institut Henri Poincaré , January 2016.
https://hal.inria.fr/hal-01410193
[18]
L. Weynans.
A Sharp Cartesian Method For The Simulation Of FlowsWith High Density Ratios, in: International Workshop on Fluid-Structure Interaction Problems, Singapore, Singapore, National University of Singapore, May 2016.
https://hal.inria.fr/hal-01411029

International Conferences with Proceedings

[19]
C.-H. Bruneau, K. Khadra, I. Mortazavi.
Numerical investigations of the flow around a ground vehicles platoon, in: ICCFD9 - 9th International Conference on Computational Fluid Dynamics, Istanbul, Turkey, July 2016.
https://hal.inria.fr/hal-01412794
[20]
M. Jedouaa, C.-H. Bruneau, E. Maitre.
An efficient interface capturing method for a large collection of interacting particles immersed in a fluid, in: ICCFD9 - 9th International Conference on Computational Fluid Dynamics, Istanbul, Turkey, July 2016.
https://hal.inria.fr/hal-01412801
[21]
A. Raeli, A. Azaïez, A. Bergmann, A. Iollo.
Numerical Modelling for Phase Change Materials, in: CANUM, Obernai, France, May 2016.
https://hal.inria.fr/hal-01404977

Conferences without Proceedings

[22]
M. Bergmann, A. Ferrero.
A hybrid DNS-ROM approach for gust computations, in: The 7th International Conference on Computational Methods, ICCM2016, Berkeley, United States, August 2016.
https://hal.inria.fr/hal-01405050
[23]
M. Bergmann, A. Ferrero, A. Iollo, A. Scardigli, H. TELIB.
An approach to perform shape optimisation by means of hybrid ROM-CFD simulations, in: (ME3) Conference: Recent developments in numerical methods for model reduction, Paris, France, November 2016, pp. 747 - 752.
https://hal.inria.fr/hal-01405493
[24]
M. Bergmann, A. Ferrero, A. Iollo, H. Telib.
An approach to predict gust effects by means of hybrid ROM/CFD simulations, in: ECCOMAS 2016, Hersonissos, Greece, June 2016.
https://hal.inria.fr/hal-01405483
[25]
M. Cisternino, A. Iollo, L. Weynans, A. Colin, P. Poulin.
Electrostrictive materials: modelling and simulation , in: 7 th European Congress on Computational Methods in Applied Sciences and Engineering, Hersonissos, Greece, ECCOMAS, June 2016.
https://hal.inria.fr/hal-01411132
[26]
F. Tesser.
Discretization of the Laplacian operator using a multitude of overlapping cartesian grids, in: Euroscipy 2016, Erlangen, Germany, August 2016.
https://hal.inria.fr/hal-01405501
[27]
F. Tesser.
Distributed message passing with MPI4Py, in: Euroscipy 2016, Erlangen, Germany, August 2016.
https://hal.inria.fr/hal-01405507

Internal Reports

[28]
M. Bergmann, A. Iollo.
Bioinspired Swimming Simulations, Inria Bordeaux Sud-Ouest, March 2016, no RR-8874.
https://hal.inria.fr/hal-01282194
[29]
M. Bergmann, L. Weynans.
A sharp Cartesian method for incompressible flows with large density ratios, Inria Bordeaux, June 2016, no RR-8926, 23 p.
https://hal.inria.fr/hal-01331234
[30]
A. Bouharguane.
Finite element method for a space-fractional anti-diffusive equation, Institut de Mathématiques de Bordeaux ; Inria Bordeaux, équipe MEMPHIS, August 2016.
https://hal.inria.fr/hal-01358184
[31]
L. Weynans.
Convergence of a cartesian method for elliptic problems with immersed interfaces, Inria Bordeaux ; Univ. Bordeaux, March 2016, no RR-8872, 20 p.
https://hal.inria.fr/hal-01280283

Other Publications

[32]
A. Bouharguane, B. Melinand.
A splitting method for deep water with bathymetry, June 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01326794
References in notes
[33]
P. Angot, C. Bruneau, P. Fabrie.
A penalization method to take into account obstacles in a incompressible flow, in: Num. Math., 1999, vol. 81, no 4, pp. 497-520.
[34]
S. Bagheri.
Koopman-mode decomposition of the cylinder wake, in: Journal of Fluid Mechanics, 2013.
[35]
P. Barton, D. Drikakis, E. Romenski, V. Titarev.
Exact and approximate solutions of Riemann problems in non-linear elasticity, in: Journal of Computational Physics, 2009, vol. 228, no 18, pp. 7046-7068.
[36]
M. Bergmann, C. Bruneau, A. Iollo.
Enablers for robust POD models, in: J. Comput. Phys., 2009, vol. 228, no 2, pp. 516–538.
[37]
M. Bergmann, L. Cordier.
Optimal control of the cylinder wake in the laminar regime by Trust-Region methods and POD Reduced-Order Models, in: J. Comp. Phys., 2008, vol. 227, no 16, pp. 7813-7840.
[38]
M. Bergmann, J. Hovnanian, A. Iollo.
An accurate cartesian method for incompressible flows with moving boundaries, in: Communications in Computational Physics, 2014, vol. 15, no 5, pp. 1266-1290.
[39]
M. Bergmann, A. Iollo.
Modeling and simulation of fish-like swimming, in: Journal of Computational Physics, 2011, vol. 230, no 2, pp. 329 - 348.
[40]
A. Bouharguane, A. Iollo, L. Weynans.
Numerical solution of the Monge-Kantorovich problem by density lift-up continuation, in: ESAIM: M2AN, 2015, vol. 49, no 6, pp. 1577-1592.
[41]
V. L. Chenadec, H. Pitsch.
A monotonicity preserving conservative sharp interface flow solver for high density ratio two-phase flows, in: J. Comput. Phys., 2013, vol. 249, pp. 185-203.
[42]
M. Cisternino, L. Weynans.
A parallel second order Cartesian method for elliptic interface problems, in: Commun. Comput. Phys., 2012, vol. 12, no 5, pp. 1562–1587.
[43]
L. Cordier, M. Bergmann.
Proper Orthogonal Decomposition: an overview, in: Lecture series 2002-04 on post-processing of experimental and numerical data, Von Kármán Institute for Fluid Dynamics, 2002.
[44]
L. Cordier, M. Bergmann.
Two typical applications of POD: coherent structures eduction and reduced order modelling, in: Lecture series 2002-04 on post-processing of experimental and numerical data, Von Kármán Institute for Fluid Dynamics, 2002.
[45]
S. Gavrilyuk, N. Favrie, R. Saurel.
Modelling wave dynamics of compressible elastic materials, in: Journal of Computational Physics, 2008, vol. 227, no 5, pp. 2941-2969.
[46]
S. Godunov.
Elements of continuum mechanics, Nauka Moscow, 1978.
[47]
F. Luddens, M. Bergmann, L. Weynans.
Enablers for high-order level set methods in fluid mechanics, in: International Journal for Numerical Methods in Fluids, December 2015, vol. 79, pp. 654-675. [ DOI : 10.1002/fld.4070 ]
[48]
J. L. Lumley.
Atmospheric Turbulence and Wave Propagation. The structure of inhomogeneous turbulence, A.M. Yaglom & V.I. Tatarski, 1967, pp. 166-178.
[49]
J. C. Martin, W. J. Moyce.
An experimental study of the collapse of liquid columns on a rigid horizontal plane, in: Philos. Trans. R. Soc. London, Ser. A, 1952, vol. 244, pp. 312-324.
[50]
I. Mezić.
Spectral Properties of Dynamical Systems, Model Reduction and Decompositions, in: Nonlinear Dynamics, 2005, vol. 41, no 1. [ DOI : 10.1007/s11071-005-2824-x ]
[51]
G. Miller, P. Colella.
A Conservative Three-Dimensional Eulerian Method for Coupled Solid-Fluid Shock Capturing, in: Journal of Computational Physics, 2002, vol. 183, no 1, pp. 26-82.
[52]
R. Mittal, G. Iaccarino.
Immersed boundary methods, in: Annu. Rev. Fluid Mech., 2005, vol. 37, pp. 239-261.
[53]
M. Raessi, H. Pitsch.
Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method, in: Computers and Fluids, 2012, vol. 63, pp. 70-81.
[54]
P. J. SCHMID.
Dynamic mode decomposition of numerical and experimental data, in: Journal of Fluid Mechanics, 008 2010, vol. 656, pp. 5-28. [ DOI : 10.1017/S0022112010001217 ]
[55]
J. A. Sethian.
Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, UK, 1999.
[56]
L. Sirovich.
Turbulence and the dynamics of coherent structures, in: Quarterly of Applied Mathematics, 1987, vol. XLV, no 3, pp. 561-590.
[57]
K. Taira, T. Colonius.
The immersed boundary method: a projection approach, in: Journal of Computational Physics, 2007, vol. 225, no 2, pp. 2118-2137.
[58]
C. Villani.
Topics in optimal transportation, 1st, American Mathematical Society, 2003.
[59]
A. de Brauer, A. Iollo, T. Milcent.
A Cartesian scheme for compressible multimaterial models in 3D, in: Journal of Computational Physics, 2016, vol. 313, pp. 121-143. [ DOI : 10.1016/j.jcp.2016.02.032 ]
http://www.sciencedirect.com/science/article/pii/S0021999116000966