

[image: cover]

 CELTIQUE

 Software certification with semantic analysis

 2016 Project-Team Activity Report
	

 Research centre:
 Rennes - Bretagne-Atlantique

 Field: Algorithmics, Programming, Software and Architecture
Theme: Proofs and Verification

 Computer Science and Digital Science:

 	2.1. - Programming Languages

 	2.1.1. - Semantics of programming languages

 	2.1.2. - Object-oriented programming

 	2.1.3. - Functional programming

 	2.1.9. - Dynamic languages

 	2.2. - Compilation

 	2.2.1. - Static analysis

 	2.2.2. - Memory models

 	2.4. - Verification, reliability, certification

 	2.4.1. - Analysis

 	2.4.2. - Model-checking

 	2.4.3. - Proofs

 	4. - Security and privacy

 	4.5. - Formal methods for security

 Other Research Topics and Application Domains:

 	6.1. - Software industry

 	6.1.1. - Software engineering

 	6.6. - Embedded systems

 Project-Team Celtique

 Members

 Overall Objectives	Project overview

 New Software and Platforms	JSCert
	Javalib
	SAWJA
	Timbuk
	CompCertSSA

 New Results	Monitoring attacker
knowledge with information flow analysis
	Semantic analysis of
functional specifications of system software
	Certified Static Analyses
	Certified Compilation
	Mechanical Verification of SSA-based Compilation Techniques
	Semantics for shared-memory concurrency
	Static analysis of functional programs
using tree automata and term rewriting

 Partnerships and Cooperations	Regional Initiatives
	National Initiatives
	European Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2009 July 01
Section: Members
Research Scientists
Thomas Jensen [Team leader, Inria, Senior Researcher, HDR]
Frédéric Besson [Inria, Researcher]
Alan Schmitt [Inria, Senior Researcher, HDR]
Faculty Members
Sandrine Blazy [Univ. Rennes I, Professor, HDR]
David Cachera [ENS Rennes, Associate Professor, HDR]
Delphine Demange [Univ. Rennes I, Associate Professor]
Thomas Genet [Univ. Rennes I, Associate Professor, HDR]
Serguei Lenglet [Univ. Lorraine, Associate Professor]
David Pichardie [ENS Rennes, Professor, HDR]
Charlotte Truchet [Univ. Nantes, Associate Professor]
Engineers
Laurent Guillo [CNRS, Senior engineer]
Pierre Wilke [Inria, until July 2016]
PhD Students
Oana Andreescu [Prove & Run, until Sep 2016, granted by CIFRE]
Martin Bodin [Inria, until Nov 2016]
Pauline Bolignano [Prove & Run, granted by CIFRE]
David Buhler [CEA]
Gurvan Cabon [Inria]
Alexandre Dang [Inria, from Oct 2016]
Yon Fernandez de Retana [Univ. Rennes I]
Julien Lepiller [Inria, from Oct 2016]
Florent Saudel [Amossys, granted by CIFRE]
Alix Trieu [Univ. Rennes I]
Yannick Zakowski [ENS Rennes]
Post-Doctoral Fellow
Cyrille Wiedling [Inria]
Visiting Scientist
Ahmad Salim Al-Sibahi [IT University of Copenhagen, from Sep 2016]
Administrative Assistant
Lydie Mabil [Inria]
Others
Aurele Barriere [Normale Sup Rennes, Internship, from May 2016 until Jul 2016]
Thomas Wood [Inria, PhD Student, from Oct 2016]

 Overall Objectives

 	Overall Objectives	Project overview

 Section:
 Overall Objectives

 Project overview

 The overall goal of the Celtique project is to improve the
security and reliability of software with semantics-based modeling,
analysis and certification techniques. To achieve this goal, the
project conducts work on improving semantic description and analysis
techniques, as well as work on using proof assistants (most notably
Coq) to develop and prove properties of these techniques. We are
applying such techniques to a variety of source languages, including
Java, C, and JavaScript. We also study how these techniques apply to
low-level languages, and how they can be combined with certified
compilation. The CompCert certified compiler and its intermediate
representations are used for much of our work on semantic modeling and
analysis of C and lower-level representations.

 The semantic analyses extract approximate but sound
descriptions of software behaviour from which a proof of safety or
security can be constructed. The analyses of interest include
numerical data flow analysis, control flow analysis for higher-order
languages, alias and points-to analysis for heap structure
manipulation. In particular, we have designed several analyses for information
flow control, aimed at computing attacker knowledge and detecting
side channels.

 We work with three application domains: Java software for small
devices (in particular smart cards and mobile telephones), embedded C
programs, and web applications.

 Celtique is a joint project with the CNRS, the University of
Rennes 1 and ENS Rennes.

 New Software and Platforms

 	New Software and Platforms	JSCert
	Javalib
	SAWJA
	Timbuk
	CompCertSSA

 Section:
 New Software and Platforms

 JSCert

 Certified JavaScript

 Functional Description

 The JSCert project aims to develop a formal understanding of the
JavaScript programming language. JSCert itself
is a mechanised specification of JavaScript, written in the Coq proof
assistant, which closely follows the ECMAScript 5 English
standard. JSRef is a reference interpreter for JavaScript in OCaml ,
which has been proved correct with respect to JSCert and tested with
the Test 262 test suite.

 	
 Participants: Martin Bodin and Alan Schmitt

 	
 Partner: Imperial College London

 	
 Contact: Alan Schmitt

 	
 URL: http://jscert.org/

 Section:
 New Software and Platforms

 Javalib

 Functional Description

 Javalib is an efficient library to parse Java .class files into OCaml data structures, thus enabling the OCaml programmer to extract information from class files, to manipulate and to generate valid .class files.

 	
 Participants: Frederic Besson, David Pichardie, Pierre Vittet, Laurent Guillo, Laurent Hubert, Tiphaine Turpin and Nicolas Barre

 	
 Contact: Frederic Besson

 	
 URL: http://sawja.inria.fr/

 Section:
 New Software and Platforms

 SAWJA

 Static Analysis Workshop for Java

 Keywords: Security - Software - Code review - Smart card

 Scientific Description

 Sawja is a library written in OCaml, relying on Javalib to provide a high level representation of Java bytecode programs. It name comes from Static Analysis Workshop for JAva. Whereas Javalib is dedicated to isolated classes, Sawja handles bytecode programs with their class hierarchy and with control flow algorithms.

 Moreover, Sawja provides some stackless intermediate representations of code, called JBir and A3Bir. The transformation algorithm, common to these representations, has been formalized and proved to be semantics-preserving.

 See also the web page http://sawja.inria.fr/.

 Version: 1.5

 Programming language: Ocaml

 Functional Description

 Sawja is a toolbox for developing static analysis of Java code in bytecode format. Sawja provides advanced algorithms for reconstructing high-level programme representations. The SawjaCard tool dedicated to JavaCard is based on the Sawja infrastructure and automatically validates the security guidelines issued by AFSCM (http://www.afscm.org/).
SawjaCard can automate the code audit process and automatic verification of functional properties.

 	
 Participants: Frederic Besson, David Pichardie and Laurent Guillo

 	
 Partners: CNRS - ENS Rennes

 	
 Contact: Frederic Besson

 	
 URL: http://sawja.inria.fr/

 Section:
 New Software and Platforms

 Timbuk

 Keywords: Proof - Ocaml - Program verification - Tree Automata

 Functional Description

 Timbuk is a collection of tools for achieving proofs of reachability over Term Rewriting Systems and for manipulating Tree Automata (bottom-up non-deterministic finite tree automata)

 	
 Participant: Thomas Genet

 	
 Contact: Thomas Genet

 	
 URL: http://www.irisa.fr/celtique/genet/timbuk/

 Section:
 New Software and Platforms

 CompCertSSA

 Keywords: Verified compilation - Single Static Assignment
form - Optimization - Coq - OCaml

 Functional Description

 CompCertSSA is built on top of the C CompCert verified compiler, by
adding a SSA-based middle-end (conversion to SSA, SSA-based
optimizations, destruction of SSA).

 Notably, the middle-end features:

 	
 new important optimizations (Sparse Conditional Constant
Propagation, and a coalescing phase on Conventional SSA)

 	
 a generic dominance-based proof framework that rationalizes
the proof process

 	
 improved performance regarding compilation time

 It is verified in the Coq proof assistant.

 	
 Participant: Delphine Demange, David Pichardie, Yon
Fernandez de Retana, Leo Stefanesco

 	
 Contact: Delphine Demange

 	
 URL: http://compcertssa.gforge.inria.fr/

 New Results

 	New Results	Monitoring attacker
knowledge with information flow analysis
	Semantic analysis of
functional specifications of system software
	Certified Static Analyses
	Certified Compilation
	Mechanical Verification of SSA-based Compilation Techniques
	Semantics for shared-memory concurrency
	Static analysis of functional programs
using tree automata and term rewriting

 Section:
 New Results

 Monitoring attacker
knowledge with information flow analysis

 Participants :
	Thomas Jensen, Frédéric Besson.

 Motivated by the problem of stateless web tracking (fingerprinting) we
have investigated a novel approach to hybrid information flow monitoring
by tracking the knowledge that an attacker can learn about secrets
during a program execution. We have proposed a general framework for
combining static and dynamic information flow analysis, based on a
precise representation of attacker knowledge. This hybrid analysis
computes a precise description of what an attacker learns about the
initial configuration (and in particular the secret part of it) by
observing a specific output. An interesting feature of this
knowledge-based information flow analysis is that it can be used to
improve other information flow control mechanisms, such as
no-sensitive upgrade. The whole framework is accompanied by a
formalisation of the theory in the Coq proof
assistant [18].

 Section:
 New Results

 Semantic analysis of
functional specifications of system software

 Participants :
	Thomas Jensen, Oana Andreescu, Pauline Bolignano.

 We have developed a static analysis for correlating input and output
values in functional specifications, written in a functional,
strongly typed, high-level specification formalism developed by the
SME Prove & Run. In the context of interactive formal verification
of complex systems, much effort is spent on proving the preservation
of the system invariants. However, most operations have a localized
effect on the system. Identifying correlations (in particular
equalities) between input and output can substantially ease the proof
burden for the programmer. Our correlation analysis is a
flow-sensitive interprocedural analysis that handles arrays,
structures and variant data types, and which computes a conservative
approximation of the equality between sub-structures of input and of
output fragments [27].
In a separate strand of work, we have used abstraction-based
techniques for structuring and simplifying the proof of simulation
between a high-level and a low-level specification of memory
management algorithms in a hypervisor [22].
Both strands of work was carried out and validated on system software
(a micro-kernel and a hypervisor) developed using the formal approach
defined by Prove & Run.

 Section:
 New Results

 Certified Static Analyses

 Certified Semantics and Analyses for JavaScript

 Participants :
	Martin Bodin, Gurvan Cabon, Thomas Jensen, Alan Schmitt.

 We have continued our work on the certification of the semantics of JavaScript
and of analyses for JavaScript on three different fronts.

 First, on the language side, we have developed at tool in collaboration with
Arthur Charguéraud (Inria Saclay) and Thomas Wood (Imperial College) to
interactively explore the specification of JavaScript. More precisely, we have
written a compiler for a subset of OCaml to a subset of JavaScript that
generates an interpreter that can be executed step by step, inspecting both
the state of the interpreted program but also the state of the interpreter. We
have used this compiler on the JavaScript interpreter extracted from our Coq
semantics of JavaScript. The resulting tool is available
here and a demo can be run
here. The tool has been
presented to the Ecma TC39 committee in charge of standardizing
JavaScript.
We are currently identifying the improvements required to make it useful for the
standardization process.

 Second, Bodin, Schmitt, and Jensen have designed an abstract domain based on
separation logic to faithfully abstract JavaScript heaps. This domain is able
to capture interlinked dynamic and extensible objects, a central feature of
the JavaScript memory model. In addition, we have introduced the notion of
membranes that let us correctly define abstractions in a way that is
compatible both with separation logic and abstract interpretation. As an
extension of last year's work [32], this approach is
globally correct as soon as each rule is independently proven correct. This
result illustrates the robustness of our approach to define certified abstract
semantics based on pretty-big-step semantics. This work has not yet been
published.

 Third, Cabon and Schmitt are developing a framework to automatically derive an
information-flow tracking semantics from a pretty-big-step semantics. We have
manually shown the approach works for complex examples, and are currently
proving it in Coq. This work is submitted for publication.

 Certified Analyses for C and lower-level programs

 Participants :
	Sandrine Blazy, David Pichardie, Alix Trieu.

 We have continued our work on the static analyzer
Verasco [37], based on abstract interpretation and
operating over most of the ISO C 1999 language (excluding recursion and
dynamic allocation). Verasco establishes the absence of run-time errors
in the analyzed programs. It enjoys a modular architecture that supports
the extensible combination of multiple abstract domains. We have extended
the memory abstract domain (that takes as argument any standard numerical
abstract domain), so that it finely tracks properties about memory
contents, taking into account union types, pointer arithmetic and type
casts [19]. This memory domain is implemented and
verified inside the Coq proof assistant with respect to the CompCert
compiler memory model.

 Motivated by applications to security and high efficiency, we are reusing
the Verasco static analyzer and the CompCert compiler in order to design
a lightweight and automated methodology for validating on low-level
intermediate representations the results of a source-level static
analysis. Our methodology relies on two main ingredients: a relative-safety
checker, an instance of a relational verifier which proves that a program
is safer than another, and a transformation of programs into defensive
form which verifies the analysis results at runtime.

 Section:
 New Results

 Certified Compilation

 Participants :
	Sandrine Blazy, Frédéric Besson, Pierre Wilke, Alexandre Dang.

 The CompCert C compiler provides the formal guarantee that the observable
behaviour of the compiled code improves on the observable behaviour of the
source code. A first limitation of this guarantee is that if the source code
goes wrong, i.e. does not have a well-defined behaviour, any compiled
code is compliant. Another limitation is that CompCert 's notion of
observable behaviour is restricted to IO events.

 Over the past years, we have developed the semantics theory so that unlike
CompCert but like Gcc , the binary representation of pointers can be
manipulated much like integers and where memory is a finite resource.
We have now a formally verified C compiler, CompCertS , which is essentially the CompCert compiler, albeit
with a stronger formal guarantee.
The semantics preservation theorem applies to a wider class of existing C
programs and, therefore, their compiled version benefits from the formal
guarantee of CompCertS .
CompCertS preserves not only the observable behaviour of programs but also
ensures that the memory consumption is preserved by the compiler. As a result,
we have the formal guarantee that the compiled code requires no more memory
than the source code. This ensures that the absence of stack-overflows is
preserved by compilation.

 The whole proof of CompCertS represents a significant proof-effort and the details
can be found in Pierre Wilke's PhD thesis [39].

 CompCertS also implements the Portable Software Fault Isolation approach
pioneered by Kroll et al. [38]. The advantage of CompCertS is that
the masking operation of pointers has a defined semantics
and can therefore be directly reasoned about.

 Section:
 New Results

 Mechanical Verification of SSA-based Compilation Techniques

 Participants :
	Delphine Demange, Yon Fernandez de Retana, David Pichardie.

 We have continued our work on the mechanical verification of
SSA-based compilation
techniques [30], [31], [36].

 A crucial phase for efficient machine code generation is the
destruction of a middle-end SSA-like IR. To this end, we have
studied a variant of SSA, namely the Conventional SSA form, which
simplifies the destruction back to non-SSA code (i.e. at the exit
point of the middle-end). This had long remained a difficult
problem, even in a non-verified environment. We formally defined
and proved the properties of the generation of Conventional SSA.
Finally, we implemented and proved correct a coalescing destruction
of the Conventional SSA form, à la Boissinot et
al. [33], where variables can be coalesced according
to a refined notion of interference. Our CSSA-based, coalescing
destruction allows us to coalesce more than 99% of introduced
copies, on average, and leads to encouraging results concerning
spilling and reloading during post-SSA allocation. This work has
been published in [24].

 Section:
 New Results

 Semantics for shared-memory concurrency

 Participants :
	Gurvan Cabon, David Cachera, David Pichardie.

 Modern multicore processor architectures and compilers of
shared-memory concurrent programming languages provide only weak
memory consistency guarantees. A memory model specifies which
write action can be seen by a read action between concurrent
threads.

 In a previous work on the Java memory
model [35], we defined in an axiomatic style,
a memory model where we embed the reorderings of memory accesses
directly in the semantics, so that formalizing optimizations and
their correctness proof is easier.

 This year, following a similar approach, we have studied the RMO
(Relaxed- Memory Order) model. More precisely, we defined a new
multibuffer operational semantics with write and read buffers. We
also introduced an intermediate semantics inspired from Boudol et
al. [34], where actions are reordered within a
single pipeline. Finally, another model formalizes the reordering
semantics in an axiomatic way. We fully proved the equivalence
between the first two models and present a methodology for the
remaining part. This work has been published in an international
workshop [23].

 Section:
 New Results

 Static analysis of functional programs
using tree automata and term rewriting

 Participant :
	Thomas Genet.

 We develop a specific theory and the related tools for analyzing
programs whose semantics is defined using term rewriting systems. The
analysis principle is based on regular approximations of infinite
sets of terms reachable by rewriting. Regular tree languages are
(possibly) infinite languages which can be finitely represented using
tree automata. To over-approximate sets of reachable terms, the tools
we develop use the Tree Automata Completion (TAC) algorithm to
compute a tree automaton recognizing a superset of all reachable
terms. This over-approximation is then used to prove properties on
the program by showing that some “bad” terms, encoding dangerous or
problematic configurations, are not in the superset and thus not
reachable. This is a specific form of, so-called, Regular Tree Model
Checking. In [16], we have shown two
results. The first result is a precision result guaranteeing that,
for most of term rewriting systems known to have a regular set of
reachable terms, TAC always compute it in an exact way. The second
result shows that tree automata completion can be applied to
functional programs to over-approximate their image. In particular,
we have shown that tree automata completion computes a safe
over-approximation of the image of any first-order, purely
functional, complete and terminating program. Now, our first next
objective is to demonstrate the accuracy of those regular
approximations to perform lightweight formal verification of
functional programs. The second objective is to lift those results to
higher-order purely functional programs.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific Events Organisation

 General Chair, Scientific Chair

 	
 PLMW@SPLASH 2016 (Programming Languages Mentoring Workshop) was chaired by Sandrine Blazy and Ulrik Prag-Schultz

 	
 CoqPL 2017 (International Workshop on Coq for PL) was chaired by Sandrine Blazy and Emilio Jesus Gallego Arias

 Member of the Organizing Committees

 	
 JFLA 2016 (Journées Francophones des Langages Applicatifs) was locally
organized by Julien Signoles and Alan Schmitt

 Scientific Events Selection

 Chair of Conference Program Committees

 	
 VSTTE 2016 (Verified Software: Theories, Tools, and Experiments) was chaired by Sandrine Blazy and Marsha Chechik

 Member of the Conference Program Committees

 	
 CoqPL 2017 (International Workshop on Coq for PL) : Sandrine Blazy

 	
 CPP 2017 (ACM SIGPLAN Conference on Certified Programs and
Proofs) : Delphine Demange

 	
 POPL 2017 (Symposium on Principles of Programming Languages) : Delphine Demange (External Program Committee)

 	
 ESOP 2017 (European Symposium on Programming) : David Pichardie

 	
 CC 2017 (International Conference on Compiler Construction) : David Pichardie

 	
 IFL 2016 (International symposium on Implementation and application of Functional Languages) : Sandrine Blazy

 	
 APLAS 2016 (Asian Symposium on Programming Languages and Systems) : Sandrine Blazy

 	
 VSTTE 2016 (Verified Software: Theories, Tools, and Experiments) : Sandrine Blazy, Frédéric Besson

 	
 GPCE 2016 (Generative Programming: Concepts & Experiences) : Sandrine Blazy

 	
 DS@STAF 2016 (Doctoral Symposium) : Sandrine Blazy

 	
 CPP 2016 (Certified Proofs and Programs) : Sandrine Blazy

 	
 HaTT 2016 (International Workshop - Hammers for Type Theories) : Frédéric Besson

 	
 AFADL 2016 (Approches Formelles dans l'Assistance au
Développement de Logiciels) : Sandrine Blazy

 	
 iFM 2016 (International Conference on integrated Formal Methods) : Delphine Demange

 	
 FTfJP 2016 (Workshop on Formal Techniques for Java-like
Programs) : Delphine Demange

 	
 IFIP SEC 2016 (31st International Conference on
ICT Systems Security and Privacy) : Thomas Jensen

 Reviewer

 	
 POPL 2017 (Symposium on Principles of Programming Languages): Alan Schmitt

 	
 ESOP 2017 (European Symposium on Programming): Alan Schmitt

 	
 VMCAI 2017 (International Conference on Verification, Model Checking, and Abstract Interpretation) : Delphine Demange

 Journal

 Reviewer - Reviewing Activities

 	
 Journal of Software Evolution and Process: Sandrine Blazy

 	
 International Journal of Computer Mathematics: Alan Schmitt

 	
 Science of Computer Programming: Alan Schmitt

 Invited Talks

 	
 Journées nationales 2016 GDR Informatique Mathématique :
Delphine Demange

 Leadership within the Scientific Community

 	
 Thomas Jensen is director of the Department NUMERIC of
informatics, mathematics and electrical engineering at University
Bretagne Loire.

 	
 Thomas Jensen is leader of the security track of the LABEX
Comin Labs.

 Scientific Expertise

 	
 Sandrine Blazy: expertise of 1 ANR project.

 	
 Thomas Jensen: expertise of full project proposals for the ANR.

 Research Administration

 	
 Sandrine Blazy is member of Section 6 of the national
committee for scientific research CoNRS from Sept. 2016.

 	
 Sandrine Blazy is coordinator of the LTP (Languages, Types,
Proofs) group of the French GDR GPL.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Licence : Sandrine Blazy, Functional programming, 30h, L3, Université Rennes 1,
France

 	
 Licence: Delphine Demange, Software Engineering, 40h, L2,
Université de Rennes 1, France

 	
 Licence: Delphine Demange, Functional Programming, 75h, L1,
Université de Rennes 1, France

 	
 Licence: Thomas Genet, Software Engineering, 58h, L2, Université
de Rennes 1 / Istic, France

 	
 Licence : Alan Schmitt, Programmation Fonctionnelle, 72h (2 semestres),
L3, Insa Rennes, France

 	
 Licence : David Pichardie, Algorithms, 36h, L3, ENS Rennes,
France

 	
 Licence : David Cachera, Logic, 36h, L3, ENS Rennes,
France

 	
 Master : Sandrine Blazy, Méthodes Formelles pour le développement
de logiciels sûrs, 53h, M1, Université Rennes 1, France

 	
 Master : Thomas Genet, Formal Design and Verification, 108h, M1,
Université de Rennes 1 / Istic, France

 	
 Master : Thomas Genet, Cryptographic Protocols, 24h, M2,
Université de Rennes 1 / Istic, France

 	
 Master : David Pichardie, Mechanized Semantics, 15h, M2,
Université Rennes 1, France

 	
 Master : Sandrine Blazy, Mechanized Semantics, 15h, M2,
Université Rennes 1, France

 	
 Master : Sandrine Blazy, Semantics, 24h, M1,
Université Rennes 1, France

 	
 Master : David Cachera, Semantics, 24h, M1,
Université Rennes 1, France

 	
 Master : Sandrine Blazy, Software vulnerabilities, 20h, M2,
Université Rennes 1, France

 	
 Master : Delphine Demange, Software Security, 9h, M2, Université
Rennes 1, France

 	
 Master : Thomas Jensen, Program analysis and Software Security,
36h, M2, Université
Rennes 1, France.

 Supervision

 	
 PhD in progress : Alexandre Dang, Compiler for security, Octobre 2016, Thomas Jensen and Frédéric Besson

 	
 PhD in progress : Julien Lepiller, Binary Validation of Software Fault Isolation, Octobre 2016, Thomas Jensen and Frédéric Besson

 	
 PhD in progress : Gurvan Cabon, Analyse non locale certifiée en
JavaScript grâce à une sémantique annotée, 1st september 2015, Alan Schmitt

 	
 PhD in progress : Florent Saudel, Vulnerability discovery, November 2015, Sandrine Blazy, Frédéric Besson and Dimitri Kirchner (Amossys)

 	
 PhD in progress : Alix Trieu, Formally verified compilation and static analysis, January 2016, Sandrine Blazy and David Pichardie

 	
 PhD in progress: David Bühler, Communication between
analyses by deductive verification and abstract
interpretation, November 2013, Sandrine Blazy and Boris Yakobowski (CEA)

 	
 PhD in progress : Yon Fernandez De Retana, Verified Optimising
Compiler for high-level languages, 1st september 2015, David Pichardie and Delphine
Demange

 	
 PhD in progress : Yannick Zakowski, Programs Logics for
Concurrency, 1st september 2014, David Pichardie and David Cachera

 	
 PhD in progress : Oana Andreescu, Static analysis of functional
specifications, 1st September 2013, Thomas Jensen, Stéphane Lescuyer
(Prove & Run)

 	
 PhD in progress: Pauline Bolignano, Modeling and abstraction of
system software, 1st November 2013, Thomas Jensen, Vincent Silés
(Prove & Run)

 	
 Pierre Wilke, Formally verified compilation of low-level C code, Sandrine Blazy and
Frédéric Besson, defended Nov 2016

 	
 Martin Bodin, Certified Analyses of JavaScript, Thomas Jensen and Alan
Schmitt, defended Nov 2016

 Juries

 	
 Sandrine Blazy, jury member (reviewer) for the PhD defense of Stefania Dumbrava, December 2016, Paris-Sud University, France

 	
 Sandrine Blazy, jury member (reviewer) for the PhD defense of Léon Gondelman, December 2016, Paris-Sud University, France

 	
 Sandrine Blazy, jury member (president) for the PhD defense of Thomas Degueule, December 2016, Rennes 1 University, France

 	
 Sandrine Blazy, jury member (president) for the PhD defense of Arjun Suresh, May 2016, Rennes 1 University, France

 	
 Sandrine Blazy, jury member for the selection of Inria CR (researcher)
candidates, March and April 2016, Inria, Saclay, France.

 	
 Sandrine Blazy, jury member for the selection of a professeur at University of Perpignan, May 2016, Perpignan, France.

 	
 Alan Schmitt, jury member for the selection of Inria CR (researcher)
candidates, March and April 2016, Inria, Rennes, France.

 	
 Delphine Demange, jury member for the selection of a Maître de
Conférences at University Paris Diderot (Paris 7) / IRIF, May 2016, Paris, France.

 	
 Alan Schmitt, jury member (reviewer) for the PhD defense of Régis Spadotti,
May 2016, Université Toulouse III

 	
 Alan Schmitt, jury member (reviewer) for the HDR defense of Nicolas
Tabareau, November 2016, Université de Nantes

 	
 Thomas Jensen, jury member (reviewer) for the PhD defense of
Denis Martinez, February 2016, Université de Montpellier

 	
 Thomas Jensen, jury member for the PhD defense of
Oliver Schwarz, October 2016, KTH, Stockholm, Sweden

 	
 Thomas Jensen, jury member (reviewer) for the PhD defense of
Rabah Laouadi, December 2016, Université de Montpellier

 	
 David Pichardie, jury member for the PhD defense of
Jacques-Henri Jourdan, May 2016, Université de Paris Diderot

 Section:
 Dissemination

 Popularization

 Talk “Bug, Virus, Intrusion, Pirates... So many threats and no defense?
Yes... maths.”, Thomas Genet, given three times in high schools close to
Rennes.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	G. Barthe, D. Demange, D. Pichardie.
Formal Verification of an SSA-based Middle-end for CompCert, in: ACM Transactions on Programming Languages and Systems (TOPLAS), 2014, 35 p.
https://hal.inria.fr/hal-01097677

 	[2]

 	F. Besson, N. Bielova, T. Jensen.
Hybrid Information Flow Monitoring Against Web Tracking, in: CSF - 2013 IEEE 26th Computer Security Foundations Symposium, New Orleans, United States, 2013. [
DOI : 10.1109/CSF.2013.23]
http://hal.inria.fr/hal-00924138

 	[3]

 	F. Besson, T. Jensen, D. Pichardie.
Proof-Carrying Code from Certified Abstract Interpretation to Fixpoint Compression, in: Theoretical Computer Science, 2006, vol. 364, no 3, pp. 273–291.

 	[4]

 	M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, G. Smith.
A Trusted Mechanised JavaScript Specification, in: POPL 2014 - 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, United States, November 2013.
http://hal.inria.fr/hal-00910135

 	[5]

 	B. Boyer, T. Genet, T. Jensen.
Certifying a Tree Automata Completion Checker, in: 4th International Joint Conference, IJCAR 2008, Lectures Notes in Computer Science, Springer-Verlag, 2008, vol. 5195, pp. 347–362.

 	[6]

 	D. Cachera, T. Jensen, A. Jobin, F. Kirchner.
Inference of polynomial invariants for imperative programs: a farewell to Gröbner bases, in: Science of Computer Programming, 2014, vol. 93, 21 p. [
DOI : 10.1016/j.scico.2014.02.028]
https://hal.inria.fr/hal-00932351

 	[7]

 	D. Cachera, T. Jensen, D. Pichardie, V. Rusu.
Extracting a Data Flow Analyser in Constructive Logic, in: Theoretical Computer Science, 2005, vol. 342, no 1, pp. 56–78.

 	[8]

 	D. Demange, V. Laporte, L. Zhao, D. Pichardie, S. Jagannathan, J. Vitek.
Plan B: A Buffered Memory Model for Java, in: Proc. of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy, ACM, 2013.
http://hal.inria.fr/hal-00924716

 	[9]

 	T. Genet, V. Rusu.
Equational Approximations for Tree Automata Completion, in: Journal of Symbolic Computation, 2010, vol. 45(5):574-597, May 2010, no 5, pp. 574-597.

 	[10]

 	L. Hubert, T. Jensen, V. Monfort, D. Pichardie.
Enforcing Secure Object Initialization in Java, in: 15th European Symposium on Research in Computer Security (ESORICS), Lecture Notes in Computer Science, Springer, 2010, vol. 6345, pp. 101-115.

 	[11]

 	J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie.
A formally-verified C static analyzer, in: POPL 2015: 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Mumbai, India, ACM, January 2015, pp. 247-259. [
DOI : 10.1145/2676726.2676966]
https://hal.inria.fr/hal-01078386

 Publications of the year

 Articles in International Peer-Reviewed Journals

 	[12]

 	A. Azevedo De Amorim, N. Collins, A. DeHon, D. Demange, C. Hriţcu, D. Pichardie, B. C. Pierce, R. Pollack, A. Tolmach.
A Verified Information-Flow Architecture, in: Journal of Computer Security (JCS); Special Issue on Verified Information Flow Security, December 2016, vol. 24, no 6, pp. 689–734.
https://hal.archives-ouvertes.fr/hal-01424797

 	[13]

 	N. Bielova, F. Besson, T. Jensen.
Using JavaScript Monitoring to Prevent Device Fingerprinting, in: ERCIM News, July 2016.
https://hal.inria.fr/hal-01353997

 	[14]

 	S. Blazy, D. Bühler, B. Yakobowski.
Improving static analyses of C programs with conditional predicates, in: Science of Computer Programming, March 2016, vol. 118, Extended version of the FMICS 2014 paper. [
DOI : 10.1145/2854065.2854082]
https://hal.inria.fr/hal-01242077

 	[15]

 	S. Blazy, V. Laporte, D. Pichardie.
Verified Abstract Interpretation Techniques for Disassembling Low-level Self-modifying Code, in: Journal of Automated Reasoning, 2016, vol. 56, no 3, 26 p, Version étendue de l'article de la conférence ITP 2014. [
DOI : 10.1007/s10817-015-9359-8]
https://hal.inria.fr/hal-01243700

 	[16]

 	T. Genet.
Termination criteria for tree automata completion, in: Journal of Logic and Algebraic Methods in Programming, 2016, vol. 85, Issue 1, part 1, pp. 3-33. [
DOI : 10.1016/j.jlamp.2015.05.003]
https://hal.inria.fr/hal-01194533

 	[17]

 	F. Honsell, L. Liquori, P. Maksimovic, I. Scagnetto.
LLFP : A Logical Framework for modeling External Evidence, Side Conditions, and Proof Irrelevance using Monads, in: Logical Methods in Computer Science, February 2016.
https://hal.inria.fr/hal-01146059

 International Conferences with Proceedings

 	[18]

 	F. Besson, N. Bielova, T. Jensen.
Hybrid Monitoring of Attacker Knowledge, in: 29th IEEE Computer Security Foundations Symposium, Lisboa, Portugal, 2016.
https://hal.inria.fr/hal-01310572

 	[19]

 	S. Blazy, V. Laporte, D. Pichardie.
An Abstract Memory Functor for Verified C Static Analyzers, in: ACM SIGPLAN International Conference on Functional Programming (ICFP 2016), Nara, Japan, ACM, September 2016, 14 p. [
DOI : 10.1145/2951913.2951937]
https://hal.inria.fr/hal-01339969

 	[20]

 	S. Blazy, A. Trieu.
Formal Verification of Control-flow Graph Flattening, in: Certified Proofs and Programs (CPP 2016), Saint-Petersburg, United States, ACM (editor), Certified Proofs and Programs (CPP 2016), January 2016, 12 p, forthcoming. [
DOI : 10.1145/2854065.2854082]
https://hal.inria.fr/hal-01242063

 	[21]

 	M. Bodin, T. Jensen, A. Schmitt.
An Abstract Separation Logic for Interlinked Extensible Records, in: Vingt-septièmes Journées Francophones des Langages Applicatifs (JFLA 2016), Saint-Malo, France, J. Signoles (editor), January 2016.
https://hal.archives-ouvertes.fr/hal-01333600

 	[22]

 	P. Bolignano, T. Jensen, V. Siles.
Modeling and Abstraction of Memory Management in a Hypervisor, in: Fundamental Approaches to Software Engineering (FASE’16), Eindhoven, Netherlands, Proc. of Fundamental Approaches to Software Engineering (FASE’16), Springer, April 2016, vol. 9633, pp. 214 - 230. [
DOI : 10.1007/978-3-662-49665-7_13]
https://hal.inria.fr/hal-01394174

 	[23]

 	G. Cabon, D. Cachera, D. Pichardie.
An Extended Buffered Memory Model With Full Reorderings, in: FtFjp - Ecoop workshop, Rome, Italy, July 2016, pp. 1 - 6. [
DOI : 10.1145/2955811.2955816]
https://hal.inria.fr/hal-01379514

 	[24]

 	D. Demange, Y. Fernandez De Retana.
Mechanizing conventional SSA for a verified destruction with coalescing, in: 25th International Conference on Compiler Construction, Barcelona, Spain, March 2016.
https://hal.archives-ouvertes.fr/hal-01378393

 	[25]

 	C. Fournet, C. Keller, V. Laporte.
A Certified Compiler for Verifiable Computing, in: IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbonne, Portugal, June 2016.
https://hal.inria.fr/hal-01397680

 	[26]

 	D. Kästner, X. Leroy, S. Blazy, B. Schommer, M. Schmidt, C. Ferdinand.
Closing the Gap – The Formally Verified Optimizing Compiler CompCert, in: SSS'17: Safety-critical Systems Symposium 2017, Bristol, United Kingdom, Proceedings of the Twenty-fifth Safety-Critical Systems Symposium, February 2017.
https://hal.inria.fr/hal-01399482

 	[27]

 	A. Oana, T. Jensen, S. Lescuyer.
Correlating Structured Inputs and Outputs in Functional Specifications, in: Software Engineering and Formal Methods, Vienna, Austria, 14th Int. Software Engineering and Formal Methods conference, Springer, July 2016, vol. 9763, 19 p. [
DOI : 10.1007/978-3-319-41591-8_7]
https://hal.inria.fr/hal-01394178

 Conferences without Proceedings

 	[28]

 	X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister, C. Ferdinand.
CompCert - A Formally Verified Optimizing Compiler, in: ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress, Toulouse, France, SEE, January 2016.
https://hal.inria.fr/hal-01238879

 Books or Proceedings Editing

 	[29]

 	S. Blazy, M. Chéchia (editors)
Verified Software: Theories, Tools, and Experiments - 8th International Conference, VSTTE 2016, Toronto, Canada, July 17-18, 2016. Proceedings, Lecture Notes in Computer Science, Springer, Toronto, Canada, 2016, vol. 9971.
https://hal.inria.fr/hal-01387207

 References in notes

 	[30]

 	G. Barthe, D. Demange, D. Pichardie.
Formal Verification of an SSA-based Middle-end for CompCert, in: ACM Transactions on Programming Languages and Systems (TOPLAS), 2014, 35 p.
https://hal.inria.fr/hal-01097677

 	[31]

 	S. Blazy, D. Demange, D. Pichardie.
Validating Dominator Trees for a Fast, Verified Dominance Test, in: Proc. of the 6th International Conference on Interactive Theorem Proving (ITP 2015), LNCS, Springer, 2015.

 	[32]

 	M. Bodin, T. Jensen, A. Schmitt.
Certified Abstract Interpretation with Pretty-Big-Step Semantics, in: Certified Programs and Proofs (CPP 2015), Mumbai, India, Proceedings of the 2015 Conference on Certified Programs and Proofs, January 2015. [
DOI : 10.1145/2676724.2693174]
https://hal.inria.fr/hal-01111588

 	[33]

 	B. Boissinot, A. Darte, F. Rastello, B. Dupont de Dinechin, C. Guillon.
Revisiting Out-of-SSA Translation for Correctness, Code Quality and Efficiency, in: Proc. of CGO'09, IEEE Computer Society, 2009, pp. 114–125.

 	[34]

 	G. Boudol, G. Petri, B. P. Serpette.
Relaxed Operational Semantics of Concurrent Programming Languages, in: EXPRESS/SOS, 2012, vol. 89, pp. 19-33.

 	[35]

 	D. Demange, V. Laporte, L. Zhao, D. Pichardie, S. Jagannathan, J. Vitek.
Plan B: A Buffered Memory Model for Java, in: Proc. of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy, ACM, 2013.
http://hal.inria.fr/hal-00924716

 	[36]

 	D. Demange, L. Stefanesco, D. Pichardie.
Verifying Fast and Sparse SSA-based Optimizations in Coq, in: Proc. of CC'15, LNCS, 2015, vol. 9031, pp. 233-252.

 	[37]

 	J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie.
A formally-verified C static analyzer, in: POPL 2015: 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Mumbai, India, ACM, January 2015, pp. 247-259. [
DOI : 10.1145/2676726.2676966]
https://hal.inria.fr/hal-01078386

 	[38]

 	J. A. Kroll, G. Stewart, A. W. Appel.
Portable Software Fault Isolation, in: CSF 2014, IEEE, 2014, pp. 18–32.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6954678

 	[39]

 	P. Wilke.
Formally verified compilation of low-level C code, University of Rennes 1, 2016.

 OEBPS/uid50.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 Collaborations in European Programs, Except FP7 & H2020

 		
 Program:CA COST Action CA15123

 		
 Project acronym: EUTYPES

 		
 Project title: European research network on types for programming and verification

 		
 Duration: 03/2016 to 03/2020

 		
 Coordinator: Herman Geuvers (Radboud University Nijmegen, The Netherlands)

 		
 Other partners: Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Macedonia, Germany, Hungary, Israel, Italy, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovenia, Spain, Sweden, United Kingdom

 		
 Abstract: Types are pervasive in programming and information technology. A type defines a formal interface between software components, allowing the automatic verification of their connections, and greatly enhancing the robustness and reliability of computations and communications. In rich dependent type theories, the full functional specification of a program can be expressed as a type. Type systems have rapidly evolved over the past years, becoming more sophisticated, capturing new aspects of the behaviour of programs and the dynamics of their execution.

 This COST Action will give a strong impetus to research on type theory and its many applications in computer science, by promoting (1) the synergy between theoretical computer scientists, logicians and mathematicians to develop new foundations for type theory, for example as based on the recent development of "homotopy type theory”, (2) the joint development of type theoretic tools as proof assistants and integrated programming environments, (3) the study of dependent types for programming and its deployment in software development, (4) the study of dependent types for verification and its deployment in software analysis and verification. The action will also tie together these different areas and promote cross-fertilisation.

OEBPS/uid78.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 Internships

 		
 Thomas Wood

 		
 Date: Oct 2016 - Dec 2016

 		
 Institution: Imperial College
(United Kingdom)

 		
 Ahmad Salim Al-Sibahi

 		
 Date: Sep 2016 - Jan 2017

 		
 Institution: IT University of Copenhagen
(Denmark)

OEBPS/contrats.html

OEBPS/uid59.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria Associate Teams Not Involved in an Inria International Labs

 JCERT

 		
 Title: Verified Compilation of Concurrent Managed Languages

 		
 International Partner (Institution - Laboratory - Researcher):

 		
 Purdue University (United States)
- School of Electrical and Computer Engineering (ECE) - Jan Vitek

 		
 Start year: 2014

 		
 See also: http://www.irisa.fr/celtique/ea/jcert/

 		
 Safety-critical applications demand rigorous, unambiguous guarantees on program correctness. While a combination of testing and manual inspection is typically used for this purpose, bugs latent in other components of the software stack, especially the compiler and the runtime system, can invalidate these hard-won guarantees. To address such concerns, additional laborious techniques such as manual code reviews of generated assembly code are required by certification agencies. Significant restrictions are imposed on compiler optimizations that can be performed, and the scope of runtime and operating system services that can be utilized. To alleviate this burden, the JCert project is implementing a verified compiler and runtime for managed concurrent languages like Java or C#.

 Inria International Partners

 WEBCERT

 		
 Title: Verified Trustworthy web Applications

 		
 International Partner (Institution - Laboratory - Researcher):

 		
 Imperial College (United Kingdom)
- Department of Computing - Philippa Gardner

 		
 Duration: 2015 - 2019

 		
 Start year: 2015

 		
 See also: JSCert web page

 		
 The goal of the WebCert partnership is to extend the development of the
JSCert formal semantics of JavaScript in the following domains: further
mechanized specification, human-readable formal specification, program logic,
verification tools, and the formalization of Defensive JavaScript.

 Informal International Partners

 Alan Schmitt is part of a Polonium Hubert Curien Partnership (PHC)
with the University of Wrocław. This partnership is led by Sergueï
Lenglet, from Loria, Nancy (currently visiting member of
the Celtique project).

OEBPS/international.html

OEBPS/domaine.html

OEBPS/fondements.html

OEBPS/uid41.html

 Section:
 Partnerships and Cooperations

 Regional Initiatives

 Labex COMIN Labs Seccloud project

 Participants :
	Frédéric Besson, Thomas Jensen, Alan Schmitt, Thomas Genet, Martin Bodin, Gurvan Cabon.

 The SecCloud project, started in 2012, will provide a comprehensive
language-based approach to the definition, analysis and implementation
of secure applications developed using Javascript and similar
languages. Our high level objectives is to enhance the security of
devices (PCs, smartphones, ect.) on which Javascript applications can
be downloaded, hence on client-side security in the context of the
Cloud. We will achieve this by focusing on three related issues:
declarative security properties and policies for client-side
applications, static and dynamic analysis of web scripting programming
languages, and multi-level information flow monitoring.

 This is a joint project with Supelec Rennes and Ecole des Mines de Nantes.

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid43.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 The ANR VERASCO project

 Participants :
	Sandrine Blazy, Delphine Demange, David Pichardie.

 Static program analysis, Certified static analysis

 The VERASCO project (2012–06/2016) is funded by the call ISN 2011, a
program of the Agence Nationale de la Recherche. It investigates the
formal verification of static analyzers and of compilers, two families
of tools that play a crucial role in the development and validation of
critical embedded software.
It is a joint project with the Inria teams
Abstraction , Gallium , The VERIMAG laboratory and the Airbus company.

 The ANR AnaStaSec project

 Participants :
	Frédéric Besson, Sandrine Blazy, Thomas Jensen, Alexandre Dang, Julien Lepiller.

 Static program analysis, Security, Secure compilation

 The AnaStaSec project (2015–2018) aims at ensuring security properties of
embedded critical systems using static analysis and security enhancing compiler
techniques. The case studies are airborne embedded software with ground
communication capabilities. The Celtique project focuses on software fault
isolation which is a compiler technology to ensure
by construction a strong segregation of tasks.

 This is a joint project with the Inria teams Antique and Prosecco ,
CEA-LIST, TrustInSoft, AMOSSYS and Airbus Group.

 The ANR Binsec project

 Participants :
	Frédéric Besson, Sandrine Blazy, Pierre Wilke, Julien Lepiller.

 Binary code, Static program analysis

 The Binsec project (2013–2017) is funded by the call ISN 2012, a
program of the Agence Nationale de la Recherche.
The goal of the BINSEC project is to develop static analysis techniques and tools for
performing automatic security analyses of binary code.
We target two main applicative domains: vulnerability analysis and virus detection.

 Binsec is a joint project with the Inria Carte team, CEA LIS , Verimag and
EADS IW .

 The ANR MALTHY project

 Participant :
	David Cachera.

 The MALTHY project, funded by ANR in the program INS 2013, aims at
advancing the state-of-the-art in real-time and hybrid model checking
by applying advanced methods and tools from linear algebra and
algebraic geometry.
MALTHY is coordinated by VERIMAG, involving
CEA-LIST, Inria Rennes (Tamis and Celtique),
Inria Saclay (MAXPLUS) and VISEO/Object Direct.

 The ANR AJACS project

 Participants :
	Martin Bodin, Gurvan Cabon, Thomas Jensen, Alan Schmitt.

 The goal of the AJACS project is to
provide strong security and privacy guarantees on the client side for
web application scripts. To this end, we propose to define a
mechanized semantics of the full JavaScript language, the most widely
used language for the Web. We then propose to develop and prove
correct analyses for JavaScript programs, in particular information
flow analyses that guarantee no secret information is leaked to
malicious parties. The definition of sub-languages of JavaScript, with
certified compilation techniques targeting them, will allow us to
derive more precise analyses. Finally, we propose to design and
certify security and privacy enforcement mechanisms for web
applications, including the APIs used to program real-world
applications.

 The project partners include the following Inria teams: Celtique,
Indes, Prosecco, and Toccata; it also involves researchers from
Imperial College as external collaborators. The project runs from
December 2014 to June 2018.

 The ANR DISCOVER project

 Participants :
	Sandrine Blazy, Delphine Demange, Thomas Jensen, David Pichardie, Yon Fernandez de Retana.

 The DISCOVER project project aims at
leveraging recent foundational work on formal verification and proof
assistants to design, implement and verify compilation techniques used
for high-level concurrent and managed programming languages. The
ultimate goal of DISCOVER is to devise new formalisms and proof
techniques able to scale to the mechanized correctness proof of a
compiler involving a rich class of optimizations, leading to efficient
and scalable applications, written in higher-level languages than
those currently handled by cutting-edge verified compilers.

 In the light of recent work in optimizations techniques used in
production compilers of high-level languages, control-flow-graph based
intermediate representations seems too rigid. Indeed, the analyses and
optimizations in these compilers work on more abstract
representations, where programs are represented with data and control
dependencies. The most representative representation is the
sea-of-nodes form, used in the Java Hotspot Server Compiler, and which
is the rationale behind the highly relaxed definition of the Java
memory model. DISCOVER proposes to tackle the problem of verified
compilation for shared-memory concurrency with a resolute
language-based approach, and to investigate the formalization of
adequate program intermediate representations and associated
correctness proof techniques.

 The project runs from October 2014 to September 2018.

OEBPS/highlights.html

OEBPS/IMG/iTunesArtwork.png
Activity Report 2016
Project-Team Celtique

Software certification
with semantic analysis

IN COLLABORATION WITH: Institutde recherche en informatique st systémes aléatoires (IRISA)

