Members
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.
3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560.
[2]
S. Delcourte, L. Fezoui, N. Glinsky-Olivier.
A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89.
[3]
S. Descombes, C. Durochat, S. Lanteri, L. Moya, C. Scheid, J. Viquerat.
Recent advances on a DGTD method for time-domain electromagnetics, in: Photonics and Nanostructures - Fundamentals and Applications, 2013, vol. 11, no 4, pp. 291–302.
[4]
V. Dolean, H. Fahs, F. Loula, S. Lanteri.
Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526.
[5]
C. Durochat, S. Lanteri, R. Léger.
A non-conforming multi-element DGTD method for the simulation of human exposure to electromagnetic waves, in: Int. J. Numer. Model., Electron. Netw. Devices Fields, 2013, vol. 27, pp. 614-625.
[6]
C. Durochat, S. Lanteri, C. Scheid.
High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., 2013, vol. 224, pp. 681–704.
[7]
M. El Bouajaji, V. Dolean, M.J. Gander, S. Lanteri.
Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, in: SIAM J. Sci. Comp., 2012, vol. 34, no 4, pp. A20148–A2071.
[8]
M. El Bouajaji, S. Lanteri.
High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2013, vol. 219, no 13, pp. 7241–7251.
[9]
V. Etienne, E. Chaljub, J. Virieux, N. Glinsky.
An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, in: Geophys. J. Int., 2010, vol. 183, no 2, pp. 941–962.
[10]
H. Fahs.
Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216.
[11]
H. Fahs.
High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300.
[12]
H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.
Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678.
[13]
L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.
Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176.
[14]
S. Lanteri, C. Scheid.
Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459.
[15]
L. Li, S. Lanteri, R. Perrussel.
Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations, in: COMPEL, 2013, pp. 1112–1138.
[16]
L. Li, S. Lanteri, R. Perrussel.
A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., 2014, vol. 256, pp. 563–581.
[17]
R. Léger, J. Viquerat, C. Durochat, C. Scheid, S. Lanteri.
A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles, in: J. Comp. Appl. Math., 2014, vol. 270, pp. 330–342.
[18]
L. Moya, S. Descombes, S. Lanteri.
Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2013, vol. 56, no 1, pp. 190–218.
[19]
L. Moya.
Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246.
[20]
F. Peyrusse, N. Glinsky-Olivier, C. Gélis, S. Lanteri.
A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin, in: Geophys. J. Int., 2014, vol. 199, no 1, pp. 315-334.
[21]
J. Viquerat, M. Klemm, S. Lanteri, C. Scheid.
Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.
http://hal.inria.fr/hal-00819758
Publications of the year

Articles in International Peer-Reviewed Journals

[22]
D. Chiron, C. Scheid.
Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two, in: Journal of Nonlinear Science, September 2015. [ DOI : 10.1007/s00332-015-9273-6 ]
https://hal.archives-ouvertes.fr/hal-00873794
[23]
S. Delcourte, N. Glinsky.
Analysis of a high-order space and time discontinuous Galerkin method for elastodynamic equations. Application to 3D wave propagation, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2015, 42 p, Accepté pour publication.
https://hal.inria.fr/hal-01109424
[24]
V. Dolean, M. J. Gander, S. Lanteri, J.-F. Lee, Z. Peng.
Effective transmission conditions for domain decomposition methods applied to the time-harmonic Curl-Curl Maxwell's equations, in: Journal of Computational Physics, 2015, vol. 280. [ DOI : 10.1016/j.jcp.2014.09.024 ]
https://hal.inria.fr/hal-01254221
[25]
M. El Bouajaji, V. Dolean, M. J. Gander, S. Lanteri, R. Perrussel.
Discontinuous Galerkin discretizations of optimized Schwarz methods for solving the time-harmonic Maxwell's equations, in: Electronic Transactions on Numerical Analysis (ETNA), 2015, vol. 44.
https://hal.inria.fr/hal-01254218
[26]
Y.-X. He, L. Li, S. Lanteri, T.-Z. Huang.
Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a Hybridizable Discontinuous Galerkin method, in: Computer Physics Communications, March 2016, vol. 200. [ DOI : 10.1016/j.cpc.2015.11.011 ]
https://hal.inria.fr/hal-01258441
[27]
G. Jay, S. Lanteri, O. Nicole, R. Perrussel.
Stabilization in relation to wavenumber in HDG methods, in: Advanced Modeling and Simulation in Engineering Sciences, June 2015, vol. 2, no 13. [ DOI : 10.1186/s40323-015-0032-x ]
https://hal.inria.fr/hal-01254211
[28]
D. Mercerat, N. Glinsky.
A nodal high-order discontinuous Galerkin method for elastic wave propagation in arbitrary heterogeneous media, in: Geophysical Journal International, 2015, 20 p, accepté pour publication.
https://hal.inria.fr/hal-01109612
[29]
J. Viquerat, C. Scheid.
A 3D curvilinear discontinuous Galerkin time-domain solver for nanoscale light–matter interactions, in: Journal of Computational and Applied Mathematics, March 2015, forthcoming. [ DOI : 10.1016/j.cam.2015.03.028 ]
https://hal.archives-ouvertes.fr/hal-01145478

International Conferences with Proceedings

[30]
S. Lanteri, C. Scheid, J. Viquerat.
Numerical modeling of light/matter interaction at the nanoscale with a high order finite element type time-domain solver, in: 36th PIERS (Progress In Electromagnetics Research Symposium), Prague, Czech Republic, July 2015.
https://hal.inria.fr/hal-01258563

Conferences without Proceedings

[31]
H. Barucq, L. Boillot, M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Discontinuous Galerkin Approximations for Seismic Wave Propagation in a HPC Framework, in: Platform for Advanced Scientific Computing Conference (PASC 15), Zurich, Switzerland, June 2015.
https://hal.inria.fr/hal-01184106
[32]
M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Modeling of elastic Helmholtz equations by hybridizable discontinuous Galerkin method (HDG) for geophysical applications, in: 5th workshop France-Brazil HOSCAR, Nice, France, September 2015.
https://hal.inria.fr/hal-01207897
[33]
M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Modelling of seismic waves propagation in harmonic domain by hybridizable discontinuous Galerkin method (HDG), in: Workshop GEAGAMM, Pau, France, May 2015.
https://hal.inria.fr/hal-01207906
[34]
M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Performance Assessment on Hybridizable Dg Approximations for the Elastic Wave Equation in Frequency Domain, in: SIAM Conference on Mathematical and Computational Issues in the Geosciences, Stanford, United States, June 2015.
https://hal.inria.fr/hal-01184111
[35]
M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain, in: Workshop Oil & Gas Rice 2015, Houston, Texas, United States, March 2015.
https://hal.inria.fr/hal-01207886
[36]
S. Lanteri, R. Léger, D. Paredes, C. Scheid, F. Valentin.
Multiscale hybrid methods for time-domain electromagnetics, in: ADMOS 2015, Nantes, France, June 2015.
https://hal.inria.fr/hal-01245189
[37]
S. Lanteri, R. Léger, D. Paredes, C. Scheid, F. Valentin.
A multiscale hybrid-mixed method for the Maxwell equations in the time domain, in: WONAPDE 2016, Concepción, Chile, Universidad de Concepción, Chile, January 2016.
https://hal.inria.fr/hal-01245904
[38]
S. Lanteri, D. Paredes, C. Scheid, F. Valentin.
MHM methods for time dependent propagation of electromagnetics waves, in: PANACM 2015, Buenos Aires, Argentina, April 2015.
https://hal.inria.fr/hal-01251774
[39]
C. Scheid.
Numerical computation of travelling waves for the Nonlinear Schrödinger equation in dimension 2, in: SciCADE 2015, Potsdam, Germany, September 2015.
https://hal.inria.fr/hal-01251762
[40]
C. Scheid.
Numerical study of dispersive models for nanophotonics, in: Waves 2015, Karlsruhe, Germany, July 2015.
https://hal.inria.fr/hal-01251766

Scientific Books (or Scientific Book chapters)

[41]
S. Descombes, M. Duarte, M. Massot.
Operator splitting methods with error estimator and adaptive time-stepping. Application to the simulation of combustion phenomena, in: operator splitting and alternating direction methods, R. Glowinski, S. Osher, W. Yin (editors), August 2015, pp. 1-13.
https://hal.archives-ouvertes.fr/hal-01183745
[42]
S. Lanteri, R. Léger, C. Scheid, J. Viquerat, T. Cabel, G. Hautreux.
Hybrid MIMD/SIMD High Order DGTD Solver for the Numerical Modeling of Light/Matter Interaction on the Nanoscale, PRACE, March 2015.
https://hal.inria.fr/hal-01253158

Internal Reports

[43]
S. Descombes, S. Lanteri, L. Moya.
Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues, Université Nice Sophia Antipolis ; CNRS, 2015.
https://hal.inria.fr/hal-01133694
[44]
L. Fezoui, S. Lanteri.
Discontinuous Galerkin methods for the numerical solution of the nonlinear Maxwell equations in 1d, Inria, January 2015, no RR-8678.
https://hal.inria.fr/hal-01114155
[45]
N. Schmitt, C. Scheid, S. Lanteri, J. Viquerat, A. Moreau.
A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects, Inria, May 2015, no RR-8726, 73 p.
https://hal.inria.fr/hal-01150076

Other Publications

[46]
S. Descombes, M. Duarte, T. Dumont, T. Guillet, V. Louvet, M. Massot.
Task-based adaptive multiresolution for time-space multi-scale reaction-diffusion systems on multi-core architectures, November 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01148617
[47]
S. Descombes, S. Lanteri, L. Moya.
Temporal convergence analysis of a locally implicit discontinuous galerkin time domain method for electromagnetic wave propagation in dispersive media, December 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01244237
[48]
R. Léger, D. Alvarez Mallon, A. Duran, S. Lanteri.
Adapting a Finite-Element Type Solver for Bioelectromagnetics to the DEEP-ER Platform, October 2015, working paper or preprint.
https://hal.inria.fr/hal-01243708
References in notes
[49]
B. Cockburn, G. Karniadakis, C. Shu (editors)
Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
[50]
B. Cockburn, C. Shu (editors)
Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
[51]
C. Dawson (editor)
Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
[52]
K. Aki, P. Richards.
Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
[53]
K. Busch, M. König, J. Niegemann.
Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37.
[54]
B. Cockburn, J. Gopalakrishnan, R. Lazarov.
Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365.
[55]
A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche.
Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496.
[56]
J. S. Hesthaven, T. Warburton.
Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
[57]
J. Jackson.
Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
[58]
X. Ji, W. Cai, P. Zhang.
High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325.
[59]
J. Niegemann, M. König, K. Stannigel, K. Busch.
Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11.
[60]
A. Taflove, S. Hagness.
Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
[61]
J. Virieux.
P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901.
[62]
K. Yee.
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307.
[63]
Y. Zheng, B. Kiraly, P. Weiss, T. Huang.
Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.