Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Managing Big Data Life Cycle

Participants : Gilles Fedak, Anthony Simonet.

Active Data - Enabling Smart Data Life Cycle Management for Large Distributed Scientific Data Sets

The Big Data challenge consists in managing, storing, analyzing and visualizing these huge and ever growing data sets to extract sense and knowledge. As the volume of data grows exponentially, the management of these data becomes more complex in proportion. A key point is to handle the complexity of the data life cycle, i.e. the various operations performed on data: transfer, archiving, replication, deletion, etc. Indeed, data-intensive applications span over a large variety of devices and e-infrastructures which implies that many systems are involved in data management and processing. In [17] , we proposed Active Data, a programming model to automate and improve the expressiveness of data management applications. We first define the concept of data life cycle and introduce a formal model that allows to expose data life cycle across heterogeneous systems and infrastructures. The Active Data programming model allows code execution at each stage of the data life cycle: routines provided by programmers are executed when a set of events (creation, replication, transfer, deletion) happen to any data. We implement and evaluate the model with four use cases: a storage cache to Amazon-S3, a cooperative sensor network, an incremental implementation of the MapReduce programming model and automated data provenance tracking across heterogeneous systems. Altogether, these scenarios illustrate the adequateness of the model to program applications that manage distributed and dynamic data sets. We also show that applications that do not leverage on data life cycle can still benefit from Active Data to improve their performances.

Using Active Data to Provide Smart Data Surveillance to E-Science Users

Modern scientific experiments often involve multiple storage and computing platforms, software tools, and analysis scripts. The resulting heterogeneous environments make data management operations challenging, the significant number of events and the absence of data integration makes it difficult to track data provenance, manage sophisticated analysis processes, and recover from unexpected situations. Current approaches often require costly human intervention and are inherently error prone. The difficulties inherent in managing and manipulating such large and highly distributed datasets also limits automated sharing and collaboration. In [37] , we study a real world e-Science application involving terabytes of data, using three different analysis and storage platforms, and a number of applications and analysis processes. We demonstrate that using a specialized data life cycle and programming model, Active Data, we can easily implement global progress monitoring, and sharing, recover from unexpected events, and automate a range of tasks.

SMART: An Application Framework for Real Time Big Data Analysis on Heterogeneous Cloud Environments.

The amount of data that human activities generate poses a challenge to current computer systems. Big data processing techniques are evolving to address this challenge, with analysis increasingly being performed using cloud-based systems. Emerging services, however, require additional enhancements in order to ensure their applicability to highly dynamic and heterogeneous environments and facilitate their use by Small & Medium-sized Enterprises (SMEs). Observing this landscape in emerging computing system development, this work presents Small & Medium-sized Enterprise Data Analytic in Real Time (SMART) for addressing some of the issues in providing compute service solutions for SMEs. SMART offers a framework for efficient development of Big Data analysis services suitable to small and medium-sized organizations, considering very heterogeneous data sources, from wireless sensor networks to data warehouses, focusing on service composability for a number of domains. In [62] , we presented the basis of this proposal and preliminary results on exploring application deployment on hybrid infrastructure.