Members
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
A. Aggarwal, R. M. Colombo, P. Goatin.
Nonlocal systems of conservation laws in several space dimensions, in: SIAM Journal on Numerical Analysis, 2015, vol. 52, no 2, pp. 963-983.
https://hal.inria.fr/hal-01016784
[2]
L. Almeida, P. Bagnerini, A. Habbal.
Modeling actin cable contraction, in: Comput. Math. Appl., 2012, vol. 64, no 3, pp. 310–321.
http://dx.doi.org/10.1016/j.camwa.2012.02.041
[3]
L. Almeida, P. Bagnerini, A. Habbal, S. Noselli, F. Serman.
A Mathematical Model for Dorsal Closure, in: Journal of Theoretical Biology, January 2011, vol. 268, no 1, pp. 105-119. [ DOI : 10.1016/j.jtbi.2010.09.029 ]
http://hal.inria.fr/inria-00544350/en
[4]
B. Andreianov, P. Goatin, N. Seguin.
Finite volume schemes for locally constrained conservation laws, in: Numer. Math., 2010, vol. 115, no 4, pp. 609–645, With supplementary material available online.
[5]
L. Blanchard, R. Duvigneau, A.-V. Vuong, B. Simeon.
Shape gradient for isogeometric structural design, in: J. Optimization Theory and Applications, 2014, vol. 161, no 2.
[6]
S. Blandin, P. Goatin.
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, in: Numerische Mathematik, 2015. [ DOI : 10.1007/s00211-015-0717-6 ]
https://hal.inria.fr/hal-00954527
[7]
R. M. Colombo, P. Goatin.
A well posed conservation law with a variable unilateral constraint, in: J. Differential Equations, 2007, vol. 234, no 2, pp. 654–675.
[8]
M. L. Delle Monache, P. Goatin.
Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, in: J. Differential Equations, 2014, vol. 257, no 11, pp. 4015–4029.
[9]
M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin, A. Bayen.
A PDE-ODE model for a junction with ramp buffer, in: SIAM J. Appl. Math., 2014, vol. 74, no 1, pp. 22–39.
[10]
R. Duvigneau, P. Chandrashekar.
Kriging-based optimization applied to flow control, in: Int. J. for Numerical Methods in Fluids, 2012, vol. 69, no 11, pp. 1701-1714.
[11]
J.-A. Désidéri.
5: Partage de territoire en ingénierie concourante, in: Optimisation Multidisciplinaire en Mécanique 1: démarche de conception, stratégies collaboratives et concourantes, multiniveau de modèles et de paramètres, sous la direction de Rajan Filomeno Coelho, Piotr Breitkopf, Hermes Science Publications-Lavoisier, 2009, ISBN 978-2-7462-2195-6.
[12]
J.-A. Désidéri.
7: Two-discipline Optimization, in: Multidisciplinary Design Optimization in Computational Mechanics, Piotr Breitkopf and Rajan Filomeno Coelho eds., ISTE London and John Wiley, April 2010, pp. 287-320, ISBN: 9781848211384.
[13]
J.-A. Désidéri.
Multiple-gradient descent algorithm (MGDA) for multiobjective optimization, in: Comptes Rendus de l'Académie des Sciences Paris, 2012, vol. 350, pp. 313-318.
http://dx.doi.org/10.1016/j.crma.2012.03.014
[14]
J.-A. Désidéri.
Multiple-Gradient Descent Algorithm (MGDA) for Pareto-Front Identification, in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, Fitzgibbon, W.; Kuznetsov, Y.A.; Neittaanmäki, P.; Pironneau, O. Eds., Springer-Verlag, 2014, vol. 34, J. Périaux and R. Glowinski Jubilees.
[15]
J.-A. Désidéri, R. Duvigneau, B. Abou El Majd, J. Zhao.
7: Optimisation de forme paramétrique multiniveau, in: Optimisation Multidisciplinaire en Mécanique 1: démarche de conception, stratégies collaboratives et concourantes, multiniveau de modèles et de paramètres, sous la direction de Rajan Filomeno Coelho, Piotr Breitkopf, Hermes Science Publications-Lavoisier, 2009, ISBN 978-2-7462-2195-6.
[16]
J.-A. Désidéri, R. Duvigneau, A. Habbal.
Multi-Objective Design Optimization Using Nash Games, in: Computational Intelligence in Aerospace Sciences, V. M. Becerra and M. Vassile Eds., Progress in Astronautics and Aeronautics, T. C. Lieuwen Ed.-in-Chief, American Institute for Aeronautics and Astronautics Inc., Reston, Virginia, 2014, vol. 244.
[17]
J.-A. Désidéri.
Revision of the Multiple-Gradient Descent Algorithm (MGDA) by Hierarchical Orthogonalization, Inria Sophia Antipolis ; Inria, April 2015, no RR-8710.
https://hal.inria.fr/hal-01139994
[18]
M. Garavello, P. Goatin.
The Cauchy problem at a node with buffer, in: Discrete Contin. Dyn. Syst., 2012, vol. 32, no 6, pp. 1915–1938.
[19]
P. Goatin, M. Mimault.
A mixed system modeling two-directional pedestrian flows, in: Mathematical Biosciences and Engineering, 2015, vol. 12, no 2, pp. 375-392.
https://hal.inria.fr/hal-00968396
[20]
E. Guilmineau, R. Duvigneau, J. Labroquère.
Optimization of jet parameters to control the flow on a ramp, in: Compte rendu de l'Académie des Sciences, June 2014, vol. 342, no 6–7.
[21]
A. Habbal, H. Barelli, G. Malandain.
Assessing the ability of the 2D Fisher-KPP equation to model cell-sheet wound closure, in: Math. Biosci., 2014, vol. 252, pp. 45–59.
http://dx.doi.org/10.1016/j.mbs.2014.03.009
[22]
A. Habbal, M. Kallel.
Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy problems, in: SIAM J. Control Optim., 2013, vol. 51, no 5, pp. 4066–4083.
http://dx.doi.org/10.1137/120869808
[23]
M. Kallel, R. Aboulaich, A. Habbal, M. Moakher.
A Nash-game approach to joint image restoration and segmentation, in: Appl. Math. Model., 2014, vol. 38, no 11-12, pp. 3038–3053.
http://dx.doi.org/10.1016/j.apm.2013.11.034
[24]
E. R. León, A. L. Pape, J.-A. Désidéri, D. Alfano, M. Costes.
Concurrent Aerodynamic Optimization of Rotor Blades Using a Nash Game Method, in: Journal of the American Helicopter Society, American Helicopter Society International Inc. Ed., 2014.
[25]
M. Martinelli, R. Duvigneau.
On the use of second-order derivative and metamodel-based Monte-Carlo for uncertainty estimation in aerodynamics, in: Computers and Fluids, 2010, vol. 37, no 6.
[26]
F. Poirion.
Stochastic Multi Gradient Descent Algorithm, ONERA, July 2014.
[27]
M. Twarogowska, P. Goatin, R. Duvigneau.
Macroscopic modeling and simulations of room evacuation, in: Appl. Math. Model., 2014, vol. 38, no 24, pp. 5781–5795.
[28]
G. Xu, B. Mourrain, A. Galligo, R. Duvigneau.
Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method, in: J. Comput. Physics, November 2013, vol. 252.
[29]
A. Zerbinati, A. Minelli, I. Ghazlane, J.-A. Désidéri.
Meta-Model-Assisted MGDA for Multi-Objective Functional Optimization, in: Computers and Fluids, 2014, vol. 102, pp. 116-130.
Publications of the year

Articles in International Peer-Reviewed Journals

[30]
A. Aggarwal, R. M. Colombo, P. Goatin.
Nonlocal systems of conservation laws in several space dimensions, in: SIAM Journal on Numerical Analysis, 2015, vol. 52, no 2, pp. 963-983.
https://hal.inria.fr/hal-01016784
[31]
M. Ayadi, A. Gdhami, A. Habbal, M. Mokni, B. Yahyaoui.
Improving the mechanical performances of a multilayered plate with the orientations of its layers of fibers, in: Computers and Mathematics with Applications, October 2015, vol. 70, no 8, 14 p. [ DOI : 10.1016/j.camwa.2015.08.009 ]
https://hal.inria.fr/hal-01247521
[32]
A. Benki, A. Habbal, G. Mathis, O. Beigneux.
Multicriteria shape design of an aerosol can, in: journal of computational design and engineering, 2015, 11 p. [ DOI : 10.1016/j.jcde.2015.03.003 ]
https://hal.inria.fr/hal-01144269
[33]
S. Blandin, P. Goatin.
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, in: Numerische Mathematik, 2015. [ DOI : 10.1007/s00211-015-0717-6 ]
https://hal.inria.fr/hal-00954527
[34]
R. Duvigneau, J. Labroquère, E. Guilmineau.
Comparison of turbulence closures for optimized active control, in: Computers and Fluids, January 2016, no 124. [ DOI : 10.1016/j.compfluid.2015.10.011 ]
https://hal.inria.fr/hal-01251823
[35]
P. Goatin, S. Göttlich, O. Kolb.
Speed limit and ramp meter control for traffic flow networks, in: Engineering Optimization, 2015. [ DOI : 10.1080/0305215X.2015.1097099 ]
https://hal.archives-ouvertes.fr/hal-01234592
[36]
P. Goatin, M. Mimault.
A mixed system modeling two-directional pedestrian flows, in: Mathematical Biosciences and Engineering, 2015, vol. 12, no 2, pp. 375-392.
https://hal.inria.fr/hal-00968396
[37]
P. Goatin, S. Scialanga.
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, in: Networks and Hetereogeneous Media, January 2016.
https://hal.archives-ouvertes.fr/hal-01234584
[38]
L. L. Obsu, M. L. Delle Monache, P. Goatin, S. M. Kassa.
Traffic flow optimization on roundabouts, in: Mathematical Methods in the Applied Sciences, 2015, vol. 38, no 14, pp. 3075–3096. [ DOI : 10.1002/mma.3283 ]
https://hal.inria.fr/hal-00939985
[39]
F.-Z. Oujebbour, A. Habbal, R. Ellaia.
Optimization of stamping process parameters to predict and reduce springback and failure criterion, in: Structural and Multidisciplinary Optimization, February 2015, vol. 51, no 2. [ DOI : 10.1007/s00158-014-1138-3 ]
https://hal.inria.fr/hal-01247533
[40]
D. Szubert, I. Asproulias, F. Grossi, R. Duvigneau, Y. Hoarau, M. Braza.
Numerical study of the turbulent transonic interaction and transition location effect involving optimisation around a supercritical airfoil, in: European Journal of Mechanics - B/Fluids, January 2016, vol. 55, no 2.
https://hal.inria.fr/hal-01251813

International Conferences with Proceedings

[41]
R. Duvigneau, J. Labroquère, E. Guilmineau.
Numerical and Modeling Issues for Optimization of Flow Control Devices, in: 50th 3AF Conference on Applied Aerodynamics, Toulouse, France, March 2015.
https://hal.inria.fr/hal-01119650

Internal Reports

[42]
R. Duvigneau.
A Sensitivity Equation Method for Unsteady Compressible Flows: Implementation and Verification, Inria, June 2015, no RR-8739, 34 p.
https://hal.inria.fr/hal-01161957
[43]
J.-A. Désidéri.
Revision of the Multiple-Gradient Descent Algorithm (MGDA) by Hierarchical Orthogonalization, Inria Sophia Antipolis ; Inria, April 2015, no RR-8710.
https://hal.inria.fr/hal-01139994

Other Publications

[44]
G. Costeseque, A. DURET.
Mesoscopic multiclass traffic flow modeling on multi-lane sections, January 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01250438
[45]
P. Goatin, F. Rossi.
A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, October 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01215944
References in notes
[46]
R. Abgrall, P. M. Congedo.
A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems, in: J. Comput. Physics, 2012.
[47]
Y. Achdou, I. Capuzzo-Dolcetta.
Mean field games: numerical methods, in: SIAM J. Numer. Anal., 2010, vol. 48, no 3, pp. 1136–1162.
http://dx.doi.org/10.1137/090758477
[48]
L. Almeida, P. Bagnerini, A. Habbal.
Modeling actin cable contraction, in: Comput. Math. Appl., 2012, vol. 64, no 3, pp. 310–321.
http://dx.doi.org/10.1016/j.camwa.2012.02.041
[49]
L. Almeida, P. Bagnerini, A. Habbal, S. Noselli, F. Serman.
A Mathematical Model for Dorsal Closure, in: Journal of Theoretical Biology, January 2011, vol. 268, no 1, pp. 105-119. [ DOI : 10.1016/j.jtbi.2010.09.029 ]
http://hal.inria.fr/inria-00544350/en
[50]
D. Amadori, W. Shen.
An integro-differential conservation law arising in a model of granular flow, in: J. Hyperbolic Differ. Equ., 2012, vol. 9, no 1, pp. 105–131.
[51]
P. Amorim.
On a nonlocal hyperbolic conservation law arising from a gradient constraint problem, in: Bull. Braz. Math. Soc. (N.S.), 2012, vol. 43, no 4, pp. 599–614.
[52]
P. Amorim, R. Colombo, A. Teixeira.
On the Numerical Integration of Scalar Nonlocal Conservation Laws, in: ESAIM M2AN, 2015, vol. 49, no 1, pp. 19–37.
[53]
Q. Bao, R. C. Hughes.
Galectin-3 and polarized growth within collagen gels of wild-type and ricin-resistant MDCK renal epithelial cells, in: Glycobiology, 1999, vol. 9, no 5, pp. 489-495.
[54]
S. Benzoni-Gavage, R. M. Colombo, P. Gwiazda.
Measure valued solutions to conservation laws motivated by traffic modelling, in: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2006, vol. 462, no 2070, pp. 1791–1803.
[55]
E. Bertino, R. Duvigneau, P. Goatin.
Uncertainties in traffic flow and model validation on GPS data, In preparation.
[56]
F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory.
On nonlocal conservation laws modelling sedimentation, in: Nonlinearity, 2011, vol. 24, no 3, pp. 855–885.
[57]
A. Bressan, S. Čanić, M. Garavello, M. Herty, B. Piccoli.
Flows on networks: recent results and perspectives, in: EMS Surv. Math. Sci., 2014, vol. 1, no 1, pp. 47–111.
[58]
M. Burger, M. Di Francesco, P. A. Markowich, M.-T. Wolfram.
Mean field games with nonlinear mobilities in pedestrian dynamics, in: Discrete Contin. Dyn. Syst. Ser. B, 2014, vol. 19, no 5, pp. 1311–1333.
[59]
M. Burger, J. Haskovec, M.-T. Wolfram.
Individual based and mean-field modelling of direct aggregation, in: Physica D, 2013, vol. 260, pp. 145–158.
[60]
A. Cabassi, P. Goatin.
Validation of traffic flow models on processed GPS data, Inria, 2013, no 8382, https://hal.inria.fr/hal-00876311 .
[61]
F. Camilli, E. Carlini, C. Marchi.
A model problem for Mean Field Games on networks, in: Discrete and Continuous Dynamical Systems, 2015, vol. 35, no 9, pp. 4173-4192.
[62]
J. A. Carrillo, S. Martin, M.-T. Wolfram.
A local version of the Hughes model for pedestrian flow, 2015, Preprint.
[63]
C. Chalons, M. L. Delle Monache, P. Goatin.
A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem, 2015, Preprint.
[64]
C. Claudel, A. Bayen.
Lax-Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part II: Computational Methods, in: Automatic Control, IEEE Transactions on, May 2010, vol. 55, no 5, pp. 1158-1174.
[65]
C. G. Claudel, A. M. Bayen.
Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, in: SIAM J. Control Optim., 2011, vol. 49, no 2, pp. 383–402.
[66]
R. M. Colombo, M. Garavello, M. Lécureux-Mercier.
A class of nonlocal models for pedestrian traffic, in: Mathematical Models and Methods in Applied Sciences, 2012, vol. 22, no 04, 1150023 p.
[67]
R. M. Colombo, M. Herty, M. Mercier.
Control of the continuity equation with a non local flow, in: ESAIM Control Optim. Calc. Var., 2011, vol. 17, no 2, pp. 353–379.
[68]
R. M. Colombo, M. Lécureux-Mercier.
Nonlocal crowd dynamics models for several populations, in: Acta Math. Sci. Ser. B Engl. Ed., 2012, vol. 32, no 1, pp. 177–196.
[69]
R. M. Colombo, F. Marcellini.
A mixed ODE–PDE model for vehicular traffic, in: Mathematical Methods in the Applied Sciences, 2015, vol. 38, no 7, pp. 1292–1302.
[70]
G. Costeseque, J.-P. Lebacque.
Discussion about traffic junction modelling: conservation laws vs Hamilton-Jacobi equations, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 411–433.
[71]
J. Cottrell, T. Hughes, Y. Bazilevs.
Isogeometric analysis : towards integration of CAD and FEA, John Wiley & sons, 2009.
[72]
G. Crippa, M. Lécureux-Mercier.
Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, in: Nonlinear Differential Equations and Applications NoDEA, 2012, pp. 1-15.
[73]
E. Cristiani, B. Piccoli, A. Tosin.
How can macroscopic models reveal self-organization in traffic flow?, in: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, Dec 2012, pp. 6989-6994.
[74]
E. Cristiani, B. Piccoli, A. Tosin.
Multiscale modeling of pedestrian dynamics, MS&A. Modeling, Simulation and Applications, Springer, Cham, 2014, vol. 12, xvi+260 p.
[75]
C. M. Dafermos.
Solutions in L for a conservation law with memory, in: Analyse mathématique et applications, Montrouge, Gauthier-Villars, 1988, pp. 117–128.
[76]
P. Degond, J.-G. Liu, C. Ringhofer.
Large-scale dynamics of mean-field games driven by local Nash equilibria, in: J. Nonlinear Sci., 2014, vol. 24, no 1, pp. 93–115.
http://dx.doi.org/10.1007/s00332-013-9185-2
[77]
M. L. Delle Monache, P. Goatin.
A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 435–447.
[78]
M. L. Delle Monache, P. Goatin.
Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, in: J. Differential Equations, 2014, vol. 257, no 11, pp. 4015–4029.
[79]
B. Després, G. Poëtte, D. Lucor.
Robust uncertainty propagation in systems of conservation laws with the entropy closure method, in: Uncertainty quantification in computational fluid dynamics, Lect. Notes Comput. Sci. Eng., Springer, Heidelberg, 2013, vol. 92, pp. 105–149.
[80]
R. J. DiPerna.
Measure-valued solutions to conservation laws, in: Arch. Rational Mech. Anal., 1985, vol. 88, no 3, pp. 223–270.
[81]
C. Dogbé.
Modeling crowd dynamics by the mean-field limit approach, in: Math. Comput. Modelling, 2010, vol. 52, no 9-10, pp. 1506–1520.
[82]
R. Duvigneau, D. Pelletier.
A sensitivity equation method for fast evaluation of nearby flows and uncertainty analysis for shape parameters, in: Int. J. of Computational Fluid Dynamics, August 2006, vol. 20, no 7, pp. 497–512.
[83]
J.-A. Désidéri.
Multiple-gradient descent algorithm (MGDA) for multiobjective optimization, in: Comptes Rendus de l'Académie des Sciences Paris, 2012, vol. 350, pp. 313-318.
http://dx.doi.org/10.1016/j.crma.2012.03.014
[84]
J.-A. Désidéri.
Multiple-Gradient Descent Algorithm (MGDA) for Pareto-Front Identification, in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, Fitzgibbon, W.; Kuznetsov, Y.A.; Neittaanmäki, P.; Pironneau, O. Eds., Springer-Verlag, 2014, vol. 34, J. Périaux and R. Glowinski Jubilees.
[85]
J.-A. Désidéri, R. Duvigneau, B. Abou El Majd, J. Zhao.
7: Optimisation de forme paramétrique multiniveau, in: Optimisation Multidisciplinaire en Mécanique 1: démarche de conception, stratégies collaboratives et concourantes, multiniveau de modèles et de paramètres, sous la direction de Rajan Filomeno Coelho, Piotr Breitkopf, Hermes Science Publications-Lavoisier, 2009, ISBN 978-2-7462-2195-6.
[86]
J.-A. Désidéri.
Revision of the Multiple-Gradient Descent Algorithm (MGDA) by Hierarchical Orthogonalization, Inria Sophia Antipolis ; Inria, April 2015, no RR-8710.
https://hal.inria.fr/hal-01139994
[87]
R. Erban, M. B. Flegg, G. A. Papoian.
Multiscale stochastic reaction-diffusion modeling: application to actin dynamics in filopodia, in: Bull. Math. Biol., 2014, vol. 76, no 4, pp. 799–818.
http://dx.doi.org/10.1007/s11538-013-9844-3
[88]
R. Eymard, T. Gallouët, R. Herbin.
Finite volume methods, in: Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020.
[89]
R. Farooqui, G. Fenteany.
Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement, in: Journal of Cell Science, 2005, vol. 118, no Pt 1, pp. 51-63.
[90]
G. Fenteany, P. A. Janmey, T. P. Stossel.
Signaling pathways and cell mechanics involved in wound closure by epithelia cell sheets, in: Current Biology, 2000, vol. 10, no 14, pp. 831-838.
[91]
U. Fjordholm, R. Kappeli, S. Mishra, E. Tadmor.
Construction of approximate entropy measure valued solutions for systems of conservation laws, Seminar for Applied Mathematics, ETH Zürich, 2014, no 2014-33.
[92]
M. B. Flegg, S. Hellander, R. Erban.
Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations, in: J. Comput. Phys., 2015, vol. 289, pp. 1–17.
http://dx.doi.org/10.1016/j.jcp.2015.01.030
[93]
A. Forrester.
Efficient Global Aerodynamic Optimisation Using Expensive Computational Fluid Dynamics Simulations, University of Southampton, 2004.
[94]
B. Franz, M. B. Flegg, S. J. Chapman, R. Erban.
Multiscale reaction-diffusion algorithms: PDE-assisted Brownian dynamics, in: SIAM J. Appl. Math., 2013, vol. 73, no 3, pp. 1224–1247.
http://dx.doi.org/10.1137/120882469
[95]
D. Gabay.
Minimizing a differentiable function over a differential manifold, in: J. Optim. Theory Appl., 1982, vol. 37, no 2.
[96]
M. Garavello, B. Piccoli.
Traffic flow on networks, AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, vol. 1, Conservation laws models.
[97]
M. Garavello, B. Piccoli.
Coupling of microscopic and phase transition models at boundary, in: Netw. Heterog. Media, 2013, vol. 8, no 3, pp. 649–661.
[98]
E. Garnier, P. Pamart, J. Dandois, P. Sagaut.
Evaluation of the unsteady RANS capabilities for separated flow control, in: Computers & Fluids, 2012, vol. 61, pp. 39-45.
[99]
M. Gröschel, A. Keimer, G. Leugering, Z. Wang.
Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, in: SIAM J. Control Optim., 2014, vol. 52, no 4, pp. 2141–2163.
[100]
S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl.
Modeling, simulation and validation of material flow on conveyor belts, in: Applied Mathematical Modelling, 2014, vol. 38, no 13, pp. 3295 - 3313.
[101]
A. Habbal, H. Barelli, G. Malandain.
Assessing the ability of the 2D Fisher-KPP equation to model cell-sheet wound closure, in: Math. Biosci., 2014, vol. 252, pp. 45–59.
http://dx.doi.org/10.1016/j.mbs.2014.03.009
[102]
X. Han, P. Sagaut, D. Lucor.
On sensitivity of RANS simulations to uncertain turbulent inflow conditions, in: Computers & Fluids, 2012, vol. 61, no 2-5.
[103]
D. Helbing.
Traffic and related self-driven many-particle systems, in: Rev. Mod. Phys., 2001, vol. 73, pp. 1067–1141.
[104]
D. Helbing, P. Molnar, I. J. Farkas, K. Bolay.
Self-organizing pedestrian movement, in: Environment and planning B, 2001, vol. 28, no 3, pp. 361–384.
[105]
J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, A. M. Bayen.
Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment, in: Transportation Research Part C: Emerging Technologies, 2010, vol. 18, no 4, pp. 568–583.
[106]
L. Huyse, R. Lewis.
Aerodynamic shape optimization of two-dimensional airfoils under uncertain conditions, ICASE, January 2001, no 2001–1.
[107]
C. Imbert, R. Monneau.
Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks, in: arXiv preprint arXiv:1306.2428, October 2014.
[108]
O. Knio, O. L. Maitre.
Uncertainty propagation in CFD using polynomial chaos decomposition, in: Fluid Dynamics Research, September 2006, vol. 38, no 9, pp. 616–640.
[109]
A. Kurganov, A. Polizzi.
Non-Oscillatory Central Schemes for a Traffic Flow Model with Arrehenius Look-Ahead Dynamics, in: Netw. Heterog. Media, 2009, vol. 4, no 3, pp. 431-451.
[110]
J. Labroquère, R. Duvigneau, E. Guilmineau.
Impact of Turbulence Closures and Numerical Errors for the Optimization of Flow Control Devices, in: 21th AIAA Computational Fluid Dynamics Conference, San Diego, USA, 2013.
[111]
A. Lachapelle, M.-T. Wolfram.
On a mean field game approach modeling congestion and aversion in pedestrian crowds, in: Transportation Research Part B: Methodological, 2011, vol. 45, no 10, pp. 1572 - 1589.
[112]
J.-M. Lasry, P.-L. Lions.
Mean field games, in: Jpn. J. Math., 2007, vol. 2, no 1, pp. 229–260.
[113]
W. Li, L. Huyse, S. Padula.
Robust airfoil optimization to achieve consistent drag reduction over a Mach range, ICASE, August 2001, no 2001–22.
[114]
G. Lin, C.-H. Su, G. Karniadakis.
Predicting shock dynamics in the presence of uncertainties, in: Journal of Computational Physics, 2006, no 217, pp. 260-276.
[115]
B. A. E. Majd, J.-A. Desideri, R. Duvigneau.
Multilevel strategies for parametric shape optimization in aerodynamics, in: European Journal of Numerical Mechanics, 2008, vol. 17, no 1-2, pp. 149-168.
[116]
C. Merritt, F. Forsberg, J. Liu, F. Kallel.
In-vivo elastography in animal models: Feasibility studies, (abstract), in: J. Ultrasound Med., 2002, vol. 21, no 98.
[117]
S. Mishra, C. Schwab, J. Sukys.
Multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws, in: Lecture Notes in Computational Science and Engineering, 2013, vol. 92, pp. 225–294. [ DOI : 10.1007/978-3-319-00885-1 ]
[118]
B. Mohammadi.
Value at risk for confidence level quantifications in robust engineering optimization, in: Optimal Control Applications and Methods, April 2014.
[119]
M. Nemec, D. Zingg.
Multipoint and multiobjective aerodynamic shape optimization, in: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, USA, September 2002.
[120]
W. Oberkampf, F. Blottner.
Issues in Computational Fluid Dynamics code verification and validation, in: AIAA Journal, 1998, vol. 36, pp. 687–695.
[121]
B. Perthame.
Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007, x+198 p.
[122]
B. Piccoli, F. Rossi.
Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, in: Acta Appl. Math., 2013, vol. 124, pp. 73–105.
[123]
V. Picheny, D. Ginsbourger, Y. Richet.
Noisy expected improvement and on-line computation time allocation for the optimization of simulators with tunable fidelity, in: 2nd Int. Conf. on Engineering Optimization, Lisbon, Portugal, 2010.
[124]
F. Poirion.
Stochastic Multi Gradient Descent Algorithm, ONERA, July 2014.
[125]
M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, P. Silberzan.
Collective migration of an epithelial monolayer in response to a model wound, in: Proceedings of the National Academy of Sciences, 2007, vol. 104, no 41, pp. 15988-15993. [ DOI : 10.1073/pnas.0705062104 ]
[126]
F. S. Priuli.
First order mean field games in crowd dynamics, in: ArXiv e-prints, February 2014.
[127]
M. Putko, P. Newman, A. Taylor, L. Green.
Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives, in: 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, June 2001, AIAA Paper 2001-2528.
[128]
C. Qi, K. A. Gallivan, P.-A. Absil.
Riemannian BFGS Algorithm with Applications, Springer, 2010, chap. Recent Advances in Optimization and its Applications in Engineering.
[129]
C. Qi, K. Gallivan, P.-A. Absil.
Riemannian BFGS Algorithm with Applications, in: Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, W. Michiels (editors), Springer Berlin Heidelberg, 2010, pp. 183-192.
http://dx.doi.org/10.1007/978-3-642-12598-0
[130]
A. Saez, E. Anon, M. Ghibaudo, O. du Roure, J.-M. D. Meglio, P. Hersen, P. Silberzan, A. Buguin, B. Ladoux.
Traction forces exerted by epithelial cell sheets, in: Journal of Physics: Condensed Matter, 2010, vol. 22, no 19, 194119 p.
http://stacks.iop.org/0953-8984/22/i=19/a=194119
[131]
P. Sagaut.
Large Eddy Simulation for Incompressible Flows An Introduction, Springer Berlin Heidelberg, 2006.
[132]
J. Schaefer, T. West, S. Hosder, C. Rumsey, J.-R. Carlson, W. Kleb.
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows, in: 22nd AIAA Computational Fluid Dynamics Conference, 22-26 June 2015, Dallas, USA., 2015.
[133]
V. Schleper.
A hybrid model for traffic flow and crowd dynamics with random individual properties, in: Math. Biosci. Eng., 2015, vol. 12, no 2, pp. 393-413.
[134]
A. Sopasakis, M. A. Katsoulakis.
Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics, in: SIAM J. Appl. Math., 2006, vol. 66, no 3, pp. 921–944 (electronic).
[135]
S. Tokareva, S. Mishra, C. Schwab.
High Order Stochastic Finite Volume Method for the Uncertainty Quantification in Hyperbolic Conservtion Laws with Random Initial Data and Flux Coefficients, in: ECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, 2012, Proc. ECCOMAS.
[136]
É. Turgeon, D. Pelletier, J. Borggaard.
Sensitivity and Uncertainty Analysis for Variable Property Flows, in: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 2001, AIAA Paper 2001-0139.
[137]
C. Villani.
Topics in optimal transportation, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003, vol. 58, xvi+370 p.
[138]
C. Villani.
Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, vol. 338, xxii+973 p, Old and new.
[139]
R. Walter, L. Huyse.
Uncertainty analysis for fluid mechanics with applications, ICASE, February 2002, no 2002–1.
[140]
D. Xiu, G. Karniadakis.
Modeling uncertainty in flow simulations via generalized Polynomial Chaos, in: Journal of Computational Physics, 2003, no 187, pp. 137-167.
[141]
G. Xu, B. Mourrain, R. Duvigneau, A. Galligo.
Parametrization of computational domain in isogeometric analysis: methods and comparison, in: Computer Methods in Applied Mechanics and Engineering, 2011, vol. 200, no 23-24.
[142]
D. You, P. Moin.
Active control of flow separation over an airfoil using synthetic jets, in: J. of Fluids and Structures, 2008, vol. 24, pp. 1349-1357.
[143]
A. Zerbinati, A. Minelli, I. Ghazlane, J.-A. Désidéri.
Meta-Model-Assisted MGDA for Multi-Objective Functional Optimization, in: Computers and Fluids, 2014, vol. 102, pp. 116-130.
[144]
D. Zingg, S. Elias.
Aerodynamic optimization under a range of operating conditions, in: AIAA Journal, November 2006, vol. 44, no 11, pp. 2787–2791.