Members
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
R. Alicandro, M. Cicalese, A. Gloria.
Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, in: Arch. Ration. Mech. Anal., 2011, vol. 200, no 3, pp. 881–943.
[2]
A. Gloria.
Reduction of the resonance error - Part 1: Approximation of homogenized coefficients, in: Math. Models Methods Appl. Sci., 2011, vol. 21, no 8, pp. 1601–1630.
[3]
A. Gloria.
Numerical homogenization: survey, new results, and perspectives, in: Esaim. Proc., 2012, vol. 37, Mathematical and numerical approaches for multiscale problem.
[4]
A. Gloria, F. Otto.
An optimal variance estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Probab., 2011, vol. 39, no 3, pp. 779–856.
[5]
A. Gloria, F. Otto.
An optimal error estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Appl. Probab., 2012, vol. 22, no 1, pp. 1–28.
[6]
A. Gloria, M. Penrose.
Random parking, Euclidean functionals, and rubber elasticity, in: Comm. Math. Physics, 2013, vol. 321, no 1, pp. 1–31.
Publications of the year

Articles in International Peer-Reviewed Journals

[7]
M. Bessemoulin-Chatard, C. Chainais-Hillairet, F. Filbet.
On discrete functional inequalities for some finite volume schemes, in: IMA Journal of Numerical Analysis, July 2014, pp. 10-32. [ DOI : 10.1093/imanum/dru032 ]
https://hal.archives-ouvertes.fr/hal-00672591
[8]
M. Bessemoulin-Chatard, C. Chainais-Hillairet, M.-H. Vignal.
Study of a fully implicit scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit, in: SIAM Journal on Numerical Analysis, 2014, vol. 52, no 4, pp. 1666–1691.
https://hal.archives-ouvertes.fr/hal-00801912
[9]
C.-H. Bruneau, E. Creusé, P. Gilliéron, I. Mortazavi.
Effect of the vortex dynamics on the drag coefficient of a square back Ahmed body : Application to the flow control, in: European Journal of Mechanics - B/Fluids, 2014, pp. 1-11.
https://hal.archives-ouvertes.fr/hal-01091585
[10]
C. Chainais-Hillairet, S. Krell, A. Mouton.
Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media, in: Numerical Methods for Partial Differential Equations, August 2014, 38 p. [ DOI : 10.1002/num.21913 ]
https://hal.archives-ouvertes.fr/hal-00929823
[11]
D. Cohen, G. Dujardin.
Energy-preserving integrators for stochastic Poisson systems, in: Communications in Mathematical Sciences, 2014, vol. 12, no 8, 17 p.
https://hal.archives-ouvertes.fr/hal-00907890
[12]
A.- C. Egloffe, A. Gloria, J.-C. Mourrat, T. N. Nguyen.
Random walk in random environment, corrector equation and homogenized coefficients: from theory to numerics, back and forth, in: IMA Journal of Numerical Analysis, 2014, 44 p. [ DOI : 10.1093/imanum/dru010 ]
https://hal.inria.fr/hal-00749667
[13]
A. Gloria.
When are increment-stationary random point sets stationary?, in: Electronic Communications in Probability, May 2014, vol. 19, no 30, pp. 1-14. [ DOI : 10.1214/ECP.v19-3288 ]
https://hal.inria.fr/hal-00863414
[14]
A. Gloria, Z. Habibi.
Reduction of the resonance error in numerical homogenisation II: correctors and extrapolation, in: Foundations of Computational Mathematics, 2015, 67 p.
https://hal.inria.fr/hal-00933234
[15]
A. Gloria, P. Le Tallec, M. Vidrascu.
Foundation, analysis, and numerical investigation of a variational network-based model for rubber, in: Continuum Mechanics and Thermodynamics, 2014, vol. 26, no 1, pp. 1–31. [ DOI : 10.1007/s00161-012-0281-6 ]
https://hal.archives-ouvertes.fr/hal-00673406
[16]
A. Gloria, S. Neukamm, F. Otto.
An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, January 2014, vol. 48, no 2, pp. 325-346. [ DOI : 10.1051/m2an/2013110 ]
https://hal.inria.fr/hal-00863488
[17]
A. Gloria, S. Neukamm, F. Otto.
Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, in: Inventiones Mathematicae, 2015, 61 p. [ DOI : 10.1007/s00222-014-0518-z ]
https://hal.archives-ouvertes.fr/hal-01093405
[18]
V. Gudmundsson, S. Hauksson, A. Johnsen, G. Reinisch, A. Manolescu, C. Besse, G. Dujardin.
Excitation of radial collective modes in a quantum dot: Beyond linear response, in: Annalen der Physik, 2014, vol. 526, no 5-6, 12 pages with 16 included pdf figures. [ DOI : 10.1002/andp.201400048 ]
https://hal.archives-ouvertes.fr/hal-00907845
[19]
I. Lacroix-Violet, C. Chainais-Hillairet.
On the existence of solutions for a drift-diffusion system arising in corrosion modelling, in: Discrete and Continuous Dynamical Systems - Series B, 2015, vol. Volume 20, no Issue 1, 15 p.
https://hal.archives-ouvertes.fr/hal-00764239
[20]
Z. Tang, P. Dular, Y. Le Menach, E. Creusé, F. Piriou.
Comparison of residual and hierarchical finite element error estimators in eddy current problems, in: IEEE Transactions on Magnetics, 2014, vol. 50, no 2, 7012304.
https://hal.archives-ouvertes.fr/hal-01091577

Other Publications

[21]
C. Calgaro, E. Creusé, T. Goudon.
Modeling and Simulation of Mixture Flows : Application to Powder-Snow Avalanches, October 2014, 48 p.
https://hal.archives-ouvertes.fr/hal-00732112
[22]
V. Calvez, T. Gallouët.
Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up, March 2014.
https://hal.inria.fr/hal-00968347
[23]
C. Chainais-Hillairet, P.-L. Colin, I. Lacroix-Violet.
Convergence of a Finite Volume Scheme for a Corrosion Model, September 2014. [ DOI : 10.1007/978-3-319-05591-6_54 ]
https://hal.archives-ouvertes.fr/hal-01082041
[24]
S. De Bievre, F. Genoud, S. R. Nodari.
Orbital stability: analysis meets geometry, July 2014.
https://hal.archives-ouvertes.fr/hal-01028168
[25]
M. De Buhan, A. Gloria, P. Le Tallec, M. Vidrascu.
Reconstruction of a constitutive law for rubber from in silico experiments using Ogden's laws, January 2014.
https://hal.inria.fr/hal-00933240
[26]
A. Figalli, T. Gallouët, L. Rifford.
On the convexity of injectivity domains on nonfocal manifolds, March 2014.
https://hal.inria.fr/hal-00968354
[27]
M. Gisclon, I. Lacroix-Violet.
About the barotropic compressible quantum Navier-Stokes equations, December 2014.
https://hal.archives-ouvertes.fr/hal-01090191
[28]
A. Gloria, D. Marahrens.
Annealed estimates on the Green functions and uncertainty quantification, September 2014, 43 pages.
https://hal.archives-ouvertes.fr/hal-01093386
[29]
A. Gloria, S. Neukamm, F. Otto.
A regularity theory for random elliptic operators, September 2014.
https://hal.archives-ouvertes.fr/hal-01093368
[30]
A. Gloria, J. Nolen.
A quantitative central limit theorem for the effective conductance on the discrete torus, October 2014.
https://hal.archives-ouvertes.fr/hal-01093352
[31]
A. Gloria, F. Otto.
Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization, September 2014.
https://hal.inria.fr/hal-01060499
[32]
A. Gloria, F. Otto.
Quantitative results on the corrector equation in stochastic homogenization, September 2014, 57 pages, 1 figure.
https://hal.archives-ouvertes.fr/hal-01093381
[33]
A. Gloria, F. Otto.
Quantitative theory in stochastic homogenization, January 2014.
https://hal.inria.fr/hal-00933251
[34]
E. Soret, S. De Bièvre.
Stochastic acceleration in a random time-dependent potential, September 2014.
https://hal.archives-ouvertes.fr/hal-01061294
References in notes
[35]
G. Agrawal.
Nonlinear fiber optics, Academic Press, 2006.
[36]
B. Aguer, S. De Bièvre.
On (in)elastic non-dissipative Lorentz gases and the (in)stability of classical pulsed and kicked rotors, in: J. Phys. A, 2010, vol. 43, 474001.
[37]
T. Arbogast.
Numerical subgrid upscaling of two-phase flow in porous media, in: Numerical treatment of multiphase flows in porous media (Beijing, 1999), Berlin, Lecture Notes in Phys., Springer, 2000, vol. 552, pp. 35–49.
[38]
S. N. Armstrong, C. K. Smart.
Quantitative stochastic homogenization of convex integral functionals, in: ArXiv e-prints, June 2014.
[39]
M. Avellaneda, F.-H. Lin.
Compactness methods in the theory of homogenization, in: Comm. Pure and Applied Math., 1987, vol. 40, no 6, pp. 803–847.
http://dx.doi.org/10.1002/cpa.3160400607
[40]
J. M. Ball.
Some open problems in elasticity, in: Geometry, mechanics, and dynamics, New York, Springer, 2002, pp. 3–59.
[41]
A. Braides.
Homogenization of some almost periodic functionals, in: Rend. Accad. Naz. Sci. XL, 1985, vol. 103, pp. 261–281.
[42]
G. Dal Maso, L. Modica.
Nonlinear stochastic homogenization and ergodic theory, in: J. Reine Angew. Math., 1986, vol. 368, pp. 28–42.
[43]
S. De Bièvre, G. Forni.
Transport properties of kicked and quasiperiodic Hamiltonians, in: J. Statist. Phys., 2010, vol. 90, no 5-6, pp. 1201–1223.
[44]
M. Disertori, W. Kirsch, A. Klein, F. Klopp, V. Rivasseau.
Random Schrödinger operators, Panoramas et Synthèses, Société Mathématique de France, Paris, 2008, no 25.
[45]
Y. Efendiev, T. Hou.
Multiscale finite element methods, Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009, vol. 4, Theory and applications.
[46]
P. Flory.
Statistical mechanics of chain molecules, Interscience Publishers, New York, 1969.
[47]
J.-C. Garreau, B. Vermersch.
Spectral description of the dynamics of ultracold interacting bosons in disordered lattices, in: New. J. Phys., 2013, vol. 15, 045030.
[48]
A. Gloria, J.-C. Mourrat.
Spectral measure and approximation of homogenized coefficients, in: Probab. Theory. Relat. Fields, 2012, vol. 154, no 1, pp. 287-326.
[49]
T. Hou, X. Wu.
A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, in: J. Comput. Phys., 1997, vol. 134, pp. 169–189.
[50]
S. Kozlov.
The averaging of random operators, in: Mat. Sb. (N.S.), 1979, vol. 109(151), no 2, pp. 188–202, 327.
[51]
D. Marahrens, F. Otto.
Annealed estimates on the Green's function, 2013, MPI Preprint 69/2012.
[52]
S. Müller.
Homogenization of nonconvex integral functionals and cellular elastic materials, in: Arch. Rat. Mech. Anal., 1987, vol. 99, pp. 189–212.
[53]
A. Naddaf, T. Spencer.
Estimates on the variance of some homogenization problems, Preprint, 1998.
[54]
G. Papanicolaou, S. Varadhan.
Boundary value problems with rapidly oscillating random coefficients, in: Random fields, Vol. I, II (Esztergom, 1979), Amsterdam, Colloq. Math. Soc. János Bolyai, North-Holland, 1981, vol. 27, pp. 835–873.
[55]
C. Sulem, P.-L. Sulem.
The nonlinear Schrödinger equation, Springer-Verlag, New-York, 1999.
[56]
L. Treloar.
The Physics of Rubber Elasticity, Oxford at the Clarendon Press, Oxford, 1949.
[57]
E. Weinan.
Principles of multiscale modeling, Cambridge University Press, Cambridge, 2011, xviii+466 p.