Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub


Major publications by the team in recent years
R. Alicandro, M. Cicalese, A. Gloria.
Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, in: Arch. Ration. Mech. Anal., 2011, vol. 200, no 3, pp. 881–943.
A. Gloria.
Reduction of the resonance error - Part 1: Approximation of homogenized coefficients, in: Math. Models Methods Appl. Sci., 2011, vol. 21, no 8, pp. 1601–1630.
A. Gloria.
Numerical homogenization: survey, new results, and perspectives, in: Esaim. Proc., 2012, vol. 37, Mathematical and numerical approaches for multiscale problem.
A. Gloria, F. Otto.
An optimal variance estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Probab., 2011, vol. 39, no 3, pp. 779–856.
A. Gloria, F. Otto.
An optimal error estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Appl. Probab., 2012, vol. 22, no 1, pp. 1–28.
A. Gloria, M. Penrose.
Random parking, Euclidean functionals, and rubber elasticity, in: Comm. Math. Physics, 2013, vol. 321, no 1, pp. 1–31.
Publications of the year

Articles in International Peer-Reviewed Journals

M. Bessemoulin-Chatard, C. Chainais-Hillairet, F. Filbet.
On discrete functional inequalities for some finite volume schemes, in: IMA Journal of Numerical Analysis, July 2014, pp. 10-32. [ DOI : 10.1093/imanum/dru032 ]
M. Bessemoulin-Chatard, C. Chainais-Hillairet, M.-H. Vignal.
Study of a fully implicit scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit, in: SIAM Journal on Numerical Analysis, 2014, vol. 52, no 4, pp. 1666–1691.
C.-H. Bruneau, E. Creusé, P. Gilliéron, I. Mortazavi.
Effect of the vortex dynamics on the drag coefficient of a square back Ahmed body : Application to the flow control, in: European Journal of Mechanics - B/Fluids, 2014, pp. 1-11.
C. Chainais-Hillairet, S. Krell, A. Mouton.
Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media, in: Numerical Methods for Partial Differential Equations, August 2014, 38 p. [ DOI : 10.1002/num.21913 ]
D. Cohen, G. Dujardin.
Energy-preserving integrators for stochastic Poisson systems, in: Communications in Mathematical Sciences, 2014, vol. 12, no 8, 17 p.
A.- C. Egloffe, A. Gloria, J.-C. Mourrat, T. N. Nguyen.
Random walk in random environment, corrector equation and homogenized coefficients: from theory to numerics, back and forth, in: IMA Journal of Numerical Analysis, 2014, 44 p. [ DOI : 10.1093/imanum/dru010 ]
A. Gloria.
When are increment-stationary random point sets stationary?, in: Electronic Communications in Probability, May 2014, vol. 19, no 30, pp. 1-14. [ DOI : 10.1214/ECP.v19-3288 ]
A. Gloria, Z. Habibi.
Reduction of the resonance error in numerical homogenisation II: correctors and extrapolation, in: Foundations of Computational Mathematics, 2015, 67 p.
A. Gloria, P. Le Tallec, M. Vidrascu.
Foundation, analysis, and numerical investigation of a variational network-based model for rubber, in: Continuum Mechanics and Thermodynamics, 2014, vol. 26, no 1, pp. 1–31. [ DOI : 10.1007/s00161-012-0281-6 ]
A. Gloria, S. Neukamm, F. Otto.
An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, January 2014, vol. 48, no 2, pp. 325-346. [ DOI : 10.1051/m2an/2013110 ]
A. Gloria, S. Neukamm, F. Otto.
Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, in: Inventiones Mathematicae, 2015, 61 p. [ DOI : 10.1007/s00222-014-0518-z ]
V. Gudmundsson, S. Hauksson, A. Johnsen, G. Reinisch, A. Manolescu, C. Besse, G. Dujardin.
Excitation of radial collective modes in a quantum dot: Beyond linear response, in: Annalen der Physik, 2014, vol. 526, no 5-6, 12 pages with 16 included pdf figures. [ DOI : 10.1002/andp.201400048 ]
I. Lacroix-Violet, C. Chainais-Hillairet.
On the existence of solutions for a drift-diffusion system arising in corrosion modelling, in: Discrete and Continuous Dynamical Systems - Series B, 2015, vol. Volume 20, no Issue 1, 15 p.
Z. Tang, P. Dular, Y. Le Menach, E. Creusé, F. Piriou.
Comparison of residual and hierarchical finite element error estimators in eddy current problems, in: IEEE Transactions on Magnetics, 2014, vol. 50, no 2, 7012304.

Other Publications

C. Calgaro, E. Creusé, T. Goudon.
Modeling and Simulation of Mixture Flows : Application to Powder-Snow Avalanches, October 2014, 48 p.
V. Calvez, T. Gallouët.
Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up, March 2014.
C. Chainais-Hillairet, P.-L. Colin, I. Lacroix-Violet.
Convergence of a Finite Volume Scheme for a Corrosion Model, September 2014. [ DOI : 10.1007/978-3-319-05591-6_54 ]
S. De Bievre, F. Genoud, S. R. Nodari.
Orbital stability: analysis meets geometry, July 2014.
M. De Buhan, A. Gloria, P. Le Tallec, M. Vidrascu.
Reconstruction of a constitutive law for rubber from in silico experiments using Ogden's laws, January 2014.
A. Figalli, T. Gallouët, L. Rifford.
On the convexity of injectivity domains on nonfocal manifolds, March 2014.
M. Gisclon, I. Lacroix-Violet.
About the barotropic compressible quantum Navier-Stokes equations, December 2014.
A. Gloria, D. Marahrens.
Annealed estimates on the Green functions and uncertainty quantification, September 2014, 43 pages.
A. Gloria, S. Neukamm, F. Otto.
A regularity theory for random elliptic operators, September 2014.
A. Gloria, J. Nolen.
A quantitative central limit theorem for the effective conductance on the discrete torus, October 2014.
A. Gloria, F. Otto.
Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization, September 2014.
A. Gloria, F. Otto.
Quantitative results on the corrector equation in stochastic homogenization, September 2014, 57 pages, 1 figure.
A. Gloria, F. Otto.
Quantitative theory in stochastic homogenization, January 2014.
E. Soret, S. De Bièvre.
Stochastic acceleration in a random time-dependent potential, September 2014.
References in notes
G. Agrawal.
Nonlinear fiber optics, Academic Press, 2006.
B. Aguer, S. De Bièvre.
On (in)elastic non-dissipative Lorentz gases and the (in)stability of classical pulsed and kicked rotors, in: J. Phys. A, 2010, vol. 43, 474001.
T. Arbogast.
Numerical subgrid upscaling of two-phase flow in porous media, in: Numerical treatment of multiphase flows in porous media (Beijing, 1999), Berlin, Lecture Notes in Phys., Springer, 2000, vol. 552, pp. 35–49.
S. N. Armstrong, C. K. Smart.
Quantitative stochastic homogenization of convex integral functionals, in: ArXiv e-prints, June 2014.
M. Avellaneda, F.-H. Lin.
Compactness methods in the theory of homogenization, in: Comm. Pure and Applied Math., 1987, vol. 40, no 6, pp. 803–847.
J. M. Ball.
Some open problems in elasticity, in: Geometry, mechanics, and dynamics, New York, Springer, 2002, pp. 3–59.
A. Braides.
Homogenization of some almost periodic functionals, in: Rend. Accad. Naz. Sci. XL, 1985, vol. 103, pp. 261–281.
G. Dal Maso, L. Modica.
Nonlinear stochastic homogenization and ergodic theory, in: J. Reine Angew. Math., 1986, vol. 368, pp. 28–42.
S. De Bièvre, G. Forni.
Transport properties of kicked and quasiperiodic Hamiltonians, in: J. Statist. Phys., 2010, vol. 90, no 5-6, pp. 1201–1223.
M. Disertori, W. Kirsch, A. Klein, F. Klopp, V. Rivasseau.
Random Schrödinger operators, Panoramas et Synthèses, Société Mathématique de France, Paris, 2008, no 25.
Y. Efendiev, T. Hou.
Multiscale finite element methods, Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009, vol. 4, Theory and applications.
P. Flory.
Statistical mechanics of chain molecules, Interscience Publishers, New York, 1969.
J.-C. Garreau, B. Vermersch.
Spectral description of the dynamics of ultracold interacting bosons in disordered lattices, in: New. J. Phys., 2013, vol. 15, 045030.
A. Gloria, J.-C. Mourrat.
Spectral measure and approximation of homogenized coefficients, in: Probab. Theory. Relat. Fields, 2012, vol. 154, no 1, pp. 287-326.
T. Hou, X. Wu.
A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, in: J. Comput. Phys., 1997, vol. 134, pp. 169–189.
S. Kozlov.
The averaging of random operators, in: Mat. Sb. (N.S.), 1979, vol. 109(151), no 2, pp. 188–202, 327.
D. Marahrens, F. Otto.
Annealed estimates on the Green's function, 2013, MPI Preprint 69/2012.
S. Müller.
Homogenization of nonconvex integral functionals and cellular elastic materials, in: Arch. Rat. Mech. Anal., 1987, vol. 99, pp. 189–212.
A. Naddaf, T. Spencer.
Estimates on the variance of some homogenization problems, Preprint, 1998.
G. Papanicolaou, S. Varadhan.
Boundary value problems with rapidly oscillating random coefficients, in: Random fields, Vol. I, II (Esztergom, 1979), Amsterdam, Colloq. Math. Soc. János Bolyai, North-Holland, 1981, vol. 27, pp. 835–873.
C. Sulem, P.-L. Sulem.
The nonlinear Schrödinger equation, Springer-Verlag, New-York, 1999.
L. Treloar.
The Physics of Rubber Elasticity, Oxford at the Clarendon Press, Oxford, 1949.
E. Weinan.
Principles of multiscale modeling, Cambridge University Press, Cambridge, 2011, xviii+466 p.