Members
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

[1]
A. Lazrag.
Control theory and dynamical systems, Université Nice Sophia Antipolis, September 2014.
https://tel.archives-ouvertes.fr/tel-01080164

Articles in International Peer-Reviewed Journals

[2]
B. Bonnard, J.-B. Caillau.
Metrics with equatorial singularities on the sphere, in: Ann. Mat. Pura Appl., 2014, vol. 193, no 5, pp. 1353-1382. [ DOI : 10.1007/s10231-013-0333-y ]
https://hal.archives-ouvertes.fr/hal-00319299
[3]
B. Bonnard, M. Claeys, O. Cots, P. Martinon.
Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance, in: Acta Applicandae Mathematicae, June 2014, vol. 135, no 1, pp. 5-45. [ DOI : 10.1007/s10440-014-9947-3 ]
https://hal.inria.fr/hal-00867753
[4]
B. Bonnard, O. Cots.
Geometric numerical methods and results in the control imaging problem in nuclear magnetic resonance, in: Mathematical Models and Methods in Applied Sciences, 2014, vol. 24, no 1, pp. 187-212. [ DOI : 10.1142/S0218202513500504 ]
https://hal.inria.fr/hal-00939153
[5]
B. Bonnard, O. Cots, J.-B. Pomet, N. Shcherbakova.
Riemannian metrics on 2D-manifolds related to the Euler-Poinsot rigid body motion, in: ESAIM Control Optim. Calc. Var., 2014, forthcoming.
https://hal.inria.fr/hal-00918587
[6]
B. Bonnard, H. Henninger, J. Nemcova, J.-B. Pomet.
Time Versus Energy in the Averaged Optimal Coplanar Kepler Transfer towards Circular Orbits, in: Acta Applicandae Mathematicae, 2015, vol. 135, pp. 47-80. [ DOI : 10.1007/s10440-014-9948-2 ]
https://hal.inria.fr/hal-00918633

International Conferences with Proceedings

[7]
B. Bonnard, H. Henninger, J.-B. Pomet.
Time minimization versus energy minimization in the one-input controlled Kepler problem with weak propulsion, in: 21st International Symposium on Mathematical Theory of Networks and Systems, Groningen, Netherlands, July 2014, pp. 686-688.
https://hal.inria.fr/hal-01112429

Scientific Books (or Scientific Book chapters)

[8]
B. Bonnard, M. Chyba.
Singular trajectories in optimal control, in: Encyclopedia of Systems and Control, J. Baillieul, T. Samad (editors), Springer, February 2015.
https://hal.inria.fr/hal-00939089
[9]
L. Rifford.
Sub-Riemannian Geometry and Optimal Transport, SpringerBriefs in Mathematics, Springer International Publishing, 2014. [ DOI : 10.1007/978-3-319-04804-8 ]
https://hal.inria.fr/hal-01131787

Other Publications

[10]
B. Bonnard, M. Claeys, O. Cots, A. Jacquemard, P. Martinon.
A combination of algebraic, geometric and numerical methods in the contrast problem by saturation in magnetic resonance imaging, June 2014, submitted to SIAM J. Control Optim..
https://hal.inria.fr/hal-01001975
[11]
B. Bonnard, T. Combot, L. Jassionnesse.
Integrability Methods in the Time Minimal Coherence Transfer for Ising Chains of three Spins, 2014, 20 pages. [ DOI : 10.3934/xx.xx.xx.xx ]
https://hal.archives-ouvertes.fr/hal-00969285
[12]
B. Bonnard, H. Henninger, J. Rouot.
Lunar and J2 perturbations of the metric associated to the averaged orbital transfer, December 2014.
https://hal.inria.fr/hal-01090977
[13]
A. Figalli, T. Gallouët, L. Rifford.
On the convexity of injectivity domains on nonfocal manifolds, March 2014.
https://hal.inria.fr/hal-00968354
[14]
A. Lazrag.
A geometric control proof of linear Franks' lemma for geodesic flows, January 2014.
https://hal.archives-ouvertes.fr/hal-00939982
[15]
A. Lazrag, L. Rifford, R. Ruggiero.
Franks' Lemma for C 2-Mané Perturbations of Riemannian Metrics and Applications to Persistence, 2014.
https://hal.archives-ouvertes.fr/hal-01111786
References in notes
[16]
A. Agrachev, P. W. Y. Lee.
Optimal transportation under nonholonomic constraints, in: Trans. Amer. Math. Soc., 2009, vol. 361, no 11, pp. 6019–6047.
http://dx.doi.org/10.1090/S0002-9947-09-04813-2
[17]
A. Agrachev, P. W. Y. Lee.
Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian manifold, arXiv, 2011, no arXiv:0903.2550 [math.DG], 3rd version.
http://arxiv.org/abs/0903.2550
[18]
A. Agrachev, Y. L. Sachkov.
Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.
[19]
L. Ambrosio, S. Rigot.
Optimal mass transportation in the Heisenberg group, in: J. Funct. Anal., 2004, vol. 208, no 2, pp. 261–301.
http://dx.doi.org/10.1016/S0022-1236(03)00019-3
[20]
V. I. Arnold.
Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 2nd, Springer-Verlag, New York, 1989, vol. 60, xvi+508 p, Translated from the Russian by K. Vogtmann and A. Weinstein.
[21]
Z. Artstein.
Stabilization with relaxed control, in: Nonlinear Analysis TMA, November 1983, vol. 7, no 11, pp. 1163-1173.
[22]
A. Bombrun, J.-B. Pomet.
The averaged control system of fast oscillating control systems, in: SIAM J. Control Optim., 2013, vol. 51, no 3, pp. 2280-2305. [ DOI : 10.1137/11085791X ]
http://hal.inria.fr/hal-00648330/
[23]
B. Bonnard, J.-B. Caillau.
Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, vol. 24, no 3, pp. 395–411.
[24]
B. Bonnard, J.-B. Caillau.
Geodesic flow of the averaged controlled Kepler equation, in: Forum Mathematicum, September 2009, vol. 21, no 5, pp. 797–814.
http://dx.doi.org/10.1515/FORUM.2009.038
[25]
B. Bonnard, J.-B. Caillau, R. Sinclair, M. Tanaka.
Conjugate and cut loci of a two-sphere of revolution with application to optimal control, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 4, pp. 1081–1098.
http://dx.doi.org/10.1016/j.anihpc.2008.03.010
[26]
B. Bonnard, M. Chyba.
Singular trajectories and their role in control theory, Mathématiques & Applications, Springer-Verlag, Berlin, 2003, vol. 40, xvi+357 p.
[27]
B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny, Y. Zhang.
Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance, in: IEEE Transactions on Automatic Control, August 2012, vol. 57, no 8, pp. 1957-1969. [ DOI : 10.1109/TAC.2012.2195859 ]
http://hal.archives-ouvertes.fr/hal-00750032/
[28]
B. Bonnard, N. Shcherbakova, D. Sugny.
The smooth continuation method in optimal control with an application to quantum systems, in: ESAIM Control Optim. Calc. Var., 2011, vol. 17, no 1, pp. 267–292.
http://dx.doi.org/10.1051/cocv/2010004
[29]
B. Bonnard, D. Sugny.
Time-minimal control of dissipative two-level quantum systems: the integrable case, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1289–1308.
http://dx.doi.org/10.1137/080717043
[30]
B. Bonnard, D. Sugny.
Optimal control with applications in space and quantum dynamics, vol. 5 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences, Springfield, MO, 2012, xvi+283 p.
[31]
U. Boscain, B. Piccoli.
Optimal syntheses for control systems on 2-D manifolds, Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 2004, vol. 43, xiv+261 p.
[32]
Y. Brenier.
Polar factorization and monotone rearrangement of vector-valued functions, in: Comm. Pure Appl. Math., 1991, vol. 44, no 4, pp. 375–417.
http://dx.doi.org/10.1002/cpa.3160440402
[33]
F. Chaplais.
Averaging and deterministic optimal control, in: SIAM J. Control Optim., 1987, vol. 25, no 3, pp. 767–780.
[34]
F. H. Clarke, Y. S. Ledyaev, L. Rifford, R. J. Stern.
Feedback stabilization and Lyapunov functions, in: SIAM J. Control Optim., 2000, vol. 39, no 1, pp. 25–48.
http://dx.doi.org/10.1137/S0363012999352297
[35]
J. C. Doyle, B. A. Francis, A. R. Tannenbaum.
Feedback control theory, Macmillan Publishing Company, New York, 1992, xii+227 p.
[36]
L. Faubourg, J.-B. Pomet.
Control Lyapunov functions for homogeneous "Jurdjevic-Quinn” systems, in: ESAIM Control Optim. Calc. Var., 2000, vol. 5, pp. 293-311.
http://www.edpsciences.org/cocv/
[37]
A. Figalli, L. Rifford.
Mass transportation on sub-Riemannian manifolds, in: Geom. Funct. Anal., 2010, vol. 20, no 1, pp. 124–159.
http://dx.doi.org/10.1007/s00039-010-0053-z
[38]
A. Figalli, L. Rifford.
Closing Aubry sets II, in: Communications on Pure and Applied Mathematics, 2015, vol. 68, no 3, pp. 345-412.
https://hal.archives-ouvertes.fr/hal-00935970
[39]
A. Figalli, L. Rifford.
Closing Aubry sets I, in: Communications on Pure and Applied Mathematics, 2015, vol. 68, no 2, pp. 210-285.
https://hal.archives-ouvertes.fr/hal-00935965
[40]
M. Fliess, J. Lévine, P. Martin, P. Rouchon.
Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples, in: Internat. J. Control, 1995, vol. 61, no 6, pp. 1327-1361.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.66.8871
[41]
S. Geffroy.
Généralisation des techniques de moyennation en contrôle optimal - Application aux problèmes de rendez-vous orbitaux en poussée faible, Institut National Polytechnique de Toulouse, Toulouse, France, October 1997.
[42]
A. Isidori.
Nonlinear Control Systems, Comm. in Control Engineering, 3rd, Springer-Verlag, 1995.
[43]
N. Juillet.
Geometric inequalities and generalized Ricci bounds in the Heisenberg group, in: Int. Math. Res. Not. IMRN, 2009, vol. 13, pp. 2347–2373.
[44]
V. Jurdjevic.
Non-Euclidean elastica, in: Amer. J. Math., 1995, vol. 117, no 1, pp. 93–124.
http://dx.doi.org/10.2307/2375037
[45]
T. Kailath.
Linear systems, Information and System Sciences, Prentice-Hall Inc., Englewood Cliffs, N.J., 1980.
[46]
L. V. Kantorovich.
On a problem of Monge, in: Uspekhi mat. Nauka, 1948, vol. 3, pp. 225–226, English translation in J. Math. Sci. (N. Y.) 133 (2006), 1383–1383.
http://dx.doi.org/10.1007/s10958-006-0050-9
[47]
W. Klingenberg.
Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1978, vol. 230, x+227 p.
[48]
W. Klingenberg, F. Takens.
Generic properties of geodesic flows, in: Math. Ann., 1972, vol. 197, pp. 323–334.
[49]
E. B. Lee, L. Markus.
Foundations of optimal control theory, John Wiley & Sons Inc., New York, 1967.
[50]
J. Lott, C. Villani.
Ricci curvature for metric-measure spaces via optimal transport, in: Ann. of Math. (2), 2009, vol. 169, no 3, pp. 903–991.
http://dx.doi.org/10.4007/annals.2009.169.903
[51]
P. Martin, R. M. Murray, P. Rouchon.
Flat systems, in: Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes, VIII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, pp. 705–768.
http://users.ictp.it/~pub_off/lectures/lns008/Rouchon/Rouchon.pdf
[52]
R. J. McCann.
Polar factorization of maps on Riemannian manifolds, in: Geom. Funct. Anal., 2001, vol. 11, no 3, pp. 589–608.
http://dx.doi.org/10.1007/PL00001679
[53]
G. Monge.
Mémoire sur la théorie des déblais et des remblais, in: Histoire de l'Académie Royale des Sciences, 1781, pp. 666-704.
http://gallica.bnf.fr/ark:/12148/bpt6k35800.image.f796
[54]
J.-M. Morel, F. Santambrogio.
Comparison of distances between measures, in: Appl. Math. Lett., 2007, vol. 20, no 4, pp. 427–432.
http://dx.doi.org/10.1016/j.aml.2006.05.009
[55]
P. Morin, J.-B. Pomet, C. Samson.
Design of Homogeneous Time-Varying Stabilizing Control Laws for Driftless Controllable Systems Via Oscillatory Approximation of Lie Brackets in Closed Loop, in: SIAM J. Control Optim., 1999, vol. 38, no 1, pp. 22-49.
http://dx.doi.org/10.1137/S0363012997315427
[56]
Q. Mérigot.
Détection de structure géométrique dans les nuages de points, Univ. de Nice Sophia Antipolis, 2009.
http://tel.archives-ouvertes.fr/tel-00443038/
[57]
J.-B. Pomet.
Explicit Design of Time-Varying Stabilizing Control Laws for a Class of Controllable Systems without Drift, in: Syst. & Control Lett., 1992, vol. 18, pp. 147-158.
[58]
L. S. Pontryagin, V. G. Boltjanskiĭ, R. V. Gamkrelidze, E. Mitchenko.
Théorie mathématique des processus optimaux, Editions MIR, Moscou, 1974.
[59]
L. Rifford.
On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients, in: ESAIM Control Optim. Calc. Var., 2001, vol. 6, pp. 593–611.
http://dx.doi.org/10.1051/cocv:2001124
[60]
L. Rifford.
On the existence of local smooth repulsive stabilizing feedbacks in dimension three, in: J. Differential Equations, 2006, vol. 226, no 2, pp. 429–500.
http://dx.doi.org/10.1016/j.jde.2005.10.017
[61]
L. Rifford, R. O. Ruggiero.
Generic Properties of Closed Orbits of Hamiltonian Flows from Mañé's Viewpoint, in: International Mathematics Research Notices, 2012. [ DOI : 10.1093/imrn/rnr231 ]
http://imrn.oxfordjournals.org/content/early/2011/12/14/imrn.rnr231.abstract
[62]
J. A. Sanders, F. Verhulst.
Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Springer-Verlag, 1985, vol. 56.
[63]
K.-T. Sturm.
On the geometry of metric measure spaces. I, in: Acta Math., 2006, vol. 196, no 1, pp. 65–131.
http://dx.doi.org/10.1007/s11511-006-0002-8
[64]
K.-T. Sturm.
On the geometry of metric measure spaces. II, in: Acta Math., 2006, vol. 196, no 1, pp. 133–177.
http://dx.doi.org/10.1007/s11511-006-0003-7