Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub


Publications of the year

Doctoral Dissertations and Habilitation Theses

A. Lazrag.
Control theory and dynamical systems, Université Nice Sophia Antipolis, September 2014.

Articles in International Peer-Reviewed Journals

B. Bonnard, J.-B. Caillau.
Metrics with equatorial singularities on the sphere, in: Ann. Mat. Pura Appl., 2014, vol. 193, no 5, pp. 1353-1382. [ DOI : 10.1007/s10231-013-0333-y ]
B. Bonnard, M. Claeys, O. Cots, P. Martinon.
Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance, in: Acta Applicandae Mathematicae, June 2014, vol. 135, no 1, pp. 5-45. [ DOI : 10.1007/s10440-014-9947-3 ]
B. Bonnard, O. Cots.
Geometric numerical methods and results in the control imaging problem in nuclear magnetic resonance, in: Mathematical Models and Methods in Applied Sciences, 2014, vol. 24, no 1, pp. 187-212. [ DOI : 10.1142/S0218202513500504 ]
B. Bonnard, O. Cots, J.-B. Pomet, N. Shcherbakova.
Riemannian metrics on 2D-manifolds related to the Euler-Poinsot rigid body motion, in: ESAIM Control Optim. Calc. Var., 2014, forthcoming.
B. Bonnard, H. Henninger, J. Nemcova, J.-B. Pomet.
Time Versus Energy in the Averaged Optimal Coplanar Kepler Transfer towards Circular Orbits, in: Acta Applicandae Mathematicae, 2015, vol. 135, pp. 47-80. [ DOI : 10.1007/s10440-014-9948-2 ]

International Conferences with Proceedings

B. Bonnard, H. Henninger, J.-B. Pomet.
Time minimization versus energy minimization in the one-input controlled Kepler problem with weak propulsion, in: 21st International Symposium on Mathematical Theory of Networks and Systems, Groningen, Netherlands, July 2014, pp. 686-688.

Scientific Books (or Scientific Book chapters)

B. Bonnard, M. Chyba.
Singular trajectories in optimal control, in: Encyclopedia of Systems and Control, J. Baillieul, T. Samad (editors), Springer, February 2015.
L. Rifford.
Sub-Riemannian Geometry and Optimal Transport, SpringerBriefs in Mathematics, Springer International Publishing, 2014. [ DOI : 10.1007/978-3-319-04804-8 ]

Other Publications

B. Bonnard, M. Claeys, O. Cots, A. Jacquemard, P. Martinon.
A combination of algebraic, geometric and numerical methods in the contrast problem by saturation in magnetic resonance imaging, June 2014, submitted to SIAM J. Control Optim..
B. Bonnard, T. Combot, L. Jassionnesse.
Integrability Methods in the Time Minimal Coherence Transfer for Ising Chains of three Spins, 2014, 20 pages. [ DOI : 10.3934/xx.xx.xx.xx ]
B. Bonnard, H. Henninger, J. Rouot.
Lunar and J2 perturbations of the metric associated to the averaged orbital transfer, December 2014.
A. Figalli, T. Gallouët, L. Rifford.
On the convexity of injectivity domains on nonfocal manifolds, March 2014.
A. Lazrag.
A geometric control proof of linear Franks' lemma for geodesic flows, January 2014.
A. Lazrag, L. Rifford, R. Ruggiero.
Franks' Lemma for C 2-Mané Perturbations of Riemannian Metrics and Applications to Persistence, 2014.
References in notes
A. Agrachev, P. W. Y. Lee.
Optimal transportation under nonholonomic constraints, in: Trans. Amer. Math. Soc., 2009, vol. 361, no 11, pp. 6019–6047.
A. Agrachev, P. W. Y. Lee.
Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian manifold, arXiv, 2011, no arXiv:0903.2550 [math.DG], 3rd version.
A. Agrachev, Y. L. Sachkov.
Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.
L. Ambrosio, S. Rigot.
Optimal mass transportation in the Heisenberg group, in: J. Funct. Anal., 2004, vol. 208, no 2, pp. 261–301.
V. I. Arnold.
Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 2nd, Springer-Verlag, New York, 1989, vol. 60, xvi+508 p, Translated from the Russian by K. Vogtmann and A. Weinstein.
Z. Artstein.
Stabilization with relaxed control, in: Nonlinear Analysis TMA, November 1983, vol. 7, no 11, pp. 1163-1173.
A. Bombrun, J.-B. Pomet.
The averaged control system of fast oscillating control systems, in: SIAM J. Control Optim., 2013, vol. 51, no 3, pp. 2280-2305. [ DOI : 10.1137/11085791X ]
B. Bonnard, J.-B. Caillau.
Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, vol. 24, no 3, pp. 395–411.
B. Bonnard, J.-B. Caillau.
Geodesic flow of the averaged controlled Kepler equation, in: Forum Mathematicum, September 2009, vol. 21, no 5, pp. 797–814.
B. Bonnard, J.-B. Caillau, R. Sinclair, M. Tanaka.
Conjugate and cut loci of a two-sphere of revolution with application to optimal control, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 4, pp. 1081–1098.
B. Bonnard, M. Chyba.
Singular trajectories and their role in control theory, Mathématiques & Applications, Springer-Verlag, Berlin, 2003, vol. 40, xvi+357 p.
B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny, Y. Zhang.
Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance, in: IEEE Transactions on Automatic Control, August 2012, vol. 57, no 8, pp. 1957-1969. [ DOI : 10.1109/TAC.2012.2195859 ]
B. Bonnard, N. Shcherbakova, D. Sugny.
The smooth continuation method in optimal control with an application to quantum systems, in: ESAIM Control Optim. Calc. Var., 2011, vol. 17, no 1, pp. 267–292.
B. Bonnard, D. Sugny.
Time-minimal control of dissipative two-level quantum systems: the integrable case, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1289–1308.
B. Bonnard, D. Sugny.
Optimal control with applications in space and quantum dynamics, vol. 5 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences, Springfield, MO, 2012, xvi+283 p.
U. Boscain, B. Piccoli.
Optimal syntheses for control systems on 2-D manifolds, Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 2004, vol. 43, xiv+261 p.
Y. Brenier.
Polar factorization and monotone rearrangement of vector-valued functions, in: Comm. Pure Appl. Math., 1991, vol. 44, no 4, pp. 375–417.
F. Chaplais.
Averaging and deterministic optimal control, in: SIAM J. Control Optim., 1987, vol. 25, no 3, pp. 767–780.
F. H. Clarke, Y. S. Ledyaev, L. Rifford, R. J. Stern.
Feedback stabilization and Lyapunov functions, in: SIAM J. Control Optim., 2000, vol. 39, no 1, pp. 25–48.
J. C. Doyle, B. A. Francis, A. R. Tannenbaum.
Feedback control theory, Macmillan Publishing Company, New York, 1992, xii+227 p.
L. Faubourg, J.-B. Pomet.
Control Lyapunov functions for homogeneous "Jurdjevic-Quinn” systems, in: ESAIM Control Optim. Calc. Var., 2000, vol. 5, pp. 293-311.
A. Figalli, L. Rifford.
Mass transportation on sub-Riemannian manifolds, in: Geom. Funct. Anal., 2010, vol. 20, no 1, pp. 124–159.
A. Figalli, L. Rifford.
Closing Aubry sets II, in: Communications on Pure and Applied Mathematics, 2015, vol. 68, no 3, pp. 345-412.
A. Figalli, L. Rifford.
Closing Aubry sets I, in: Communications on Pure and Applied Mathematics, 2015, vol. 68, no 2, pp. 210-285.
M. Fliess, J. Lévine, P. Martin, P. Rouchon.
Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples, in: Internat. J. Control, 1995, vol. 61, no 6, pp. 1327-1361.
S. Geffroy.
Généralisation des techniques de moyennation en contrôle optimal - Application aux problèmes de rendez-vous orbitaux en poussée faible, Institut National Polytechnique de Toulouse, Toulouse, France, October 1997.
A. Isidori.
Nonlinear Control Systems, Comm. in Control Engineering, 3rd, Springer-Verlag, 1995.
N. Juillet.
Geometric inequalities and generalized Ricci bounds in the Heisenberg group, in: Int. Math. Res. Not. IMRN, 2009, vol. 13, pp. 2347–2373.
V. Jurdjevic.
Non-Euclidean elastica, in: Amer. J. Math., 1995, vol. 117, no 1, pp. 93–124.
T. Kailath.
Linear systems, Information and System Sciences, Prentice-Hall Inc., Englewood Cliffs, N.J., 1980.
L. V. Kantorovich.
On a problem of Monge, in: Uspekhi mat. Nauka, 1948, vol. 3, pp. 225–226, English translation in J. Math. Sci. (N. Y.) 133 (2006), 1383–1383.
W. Klingenberg.
Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1978, vol. 230, x+227 p.
W. Klingenberg, F. Takens.
Generic properties of geodesic flows, in: Math. Ann., 1972, vol. 197, pp. 323–334.
E. B. Lee, L. Markus.
Foundations of optimal control theory, John Wiley & Sons Inc., New York, 1967.
J. Lott, C. Villani.
Ricci curvature for metric-measure spaces via optimal transport, in: Ann. of Math. (2), 2009, vol. 169, no 3, pp. 903–991.
P. Martin, R. M. Murray, P. Rouchon.
Flat systems, in: Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes, VIII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, pp. 705–768.
R. J. McCann.
Polar factorization of maps on Riemannian manifolds, in: Geom. Funct. Anal., 2001, vol. 11, no 3, pp. 589–608.
G. Monge.
Mémoire sur la théorie des déblais et des remblais, in: Histoire de l'Académie Royale des Sciences, 1781, pp. 666-704.
J.-M. Morel, F. Santambrogio.
Comparison of distances between measures, in: Appl. Math. Lett., 2007, vol. 20, no 4, pp. 427–432.
P. Morin, J.-B. Pomet, C. Samson.
Design of Homogeneous Time-Varying Stabilizing Control Laws for Driftless Controllable Systems Via Oscillatory Approximation of Lie Brackets in Closed Loop, in: SIAM J. Control Optim., 1999, vol. 38, no 1, pp. 22-49.
Q. Mérigot.
Détection de structure géométrique dans les nuages de points, Univ. de Nice Sophia Antipolis, 2009.
J.-B. Pomet.
Explicit Design of Time-Varying Stabilizing Control Laws for a Class of Controllable Systems without Drift, in: Syst. & Control Lett., 1992, vol. 18, pp. 147-158.
L. S. Pontryagin, V. G. Boltjanskiĭ, R. V. Gamkrelidze, E. Mitchenko.
Théorie mathématique des processus optimaux, Editions MIR, Moscou, 1974.
L. Rifford.
On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients, in: ESAIM Control Optim. Calc. Var., 2001, vol. 6, pp. 593–611.
L. Rifford.
On the existence of local smooth repulsive stabilizing feedbacks in dimension three, in: J. Differential Equations, 2006, vol. 226, no 2, pp. 429–500.
L. Rifford, R. O. Ruggiero.
Generic Properties of Closed Orbits of Hamiltonian Flows from Mañé's Viewpoint, in: International Mathematics Research Notices, 2012. [ DOI : 10.1093/imrn/rnr231 ]
J. A. Sanders, F. Verhulst.
Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Springer-Verlag, 1985, vol. 56.
K.-T. Sturm.
On the geometry of metric measure spaces. I, in: Acta Math., 2006, vol. 196, no 1, pp. 65–131.
K.-T. Sturm.
On the geometry of metric measure spaces. II, in: Acta Math., 2006, vol. 196, no 1, pp. 133–177.