Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Proof and computation

Participants : Laurent Théry [correspondant] , Benjamin Grégoire.

We have been continuing our effort to improve the computing power of Coq. This has led to two "computational proof":

The Erdös conjecture for n = 2 was proved this year using a SAT solver. We succeeded to formally prove this instance in Coq independently checking the 3Gb trace of the SAT solver .

The weak Goldbach conjecture was proved last year by Harald Helfgott. This proof requires a computation that the conjecture holds for numbers less than 1028. This is done in two stages. The first one is to verify Goldbach conjecture for numbers less than 1018. The second one is to verify the weak Goldbach conjecture for numbers less than 1028 using a ladder with intervals 1018. The second stage has been completely verified in Coq. We are currently working on improving the computation power of Coq to make it possible to perform the first stage in reasonable time.