Members
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
C. Agut, J. Diaz.
Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2013, vol. 47, no 3, pp. 903-932. [ DOI : 10.1051/m2an/2012061 ]
http://hal.inria.fr/hal-00759457
[2]
M. Amara, R. Djellouli, C. Farhat.
Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems, in: SIAM Journal on Numerical Analysis, 2009, vol. 47, pp. 1038–1066.
[3]
C. Baldassari, H. Barucq, H. Calandra, J. Diaz.
Numerical performances of a hybrid local-time stepping strategy applied to the reverse time migration, in: Geophysical Prospecting, September 2011, vol. 59, no 5, pp. 907-919. [ DOI : 10.1111/j.1365-2478.2011.00975.x ]
http://hal.inria.fr/hal-00627603/en
[4]
H. Barucq, C. Bekkey, R. Djellouli.
"Full aperture reconstruction of the acoustic Far-Field Pattern from few measurements", in: Communication in Computational Physics, 2012, vol. 11, pp. 647-659. [ DOI : 10.4208/cicp.281209.150610s ]
http://hal.inria.fr/inria-00527346
[5]
H. Barucq, T. Chaumont Frelet, J. Diaz, V. Péron.
Upscaling for the Laplace problem using a discontinuous Galerkin method, in: Journal of Computational and Applied Mathematics, November 2012.
http://hal.inria.fr/hal-00757098
[6]
H. Barucq, J. Diaz, V. Duprat.
Long-Time Stability Analysis of Acoustic Absorbing Boundary Conditions for Regular-Shaped Surfaces, in: Mathematical Models and Methods in Applied Sciences, 2013, vol. 23, no 11, pp. 2129-2154.
http://hal.inria.fr/hal-00759451
[7]
H. Barucq, J. Diaz, M. Tlemcani.
New absorbing layers conditions for short water waves, in: Journal of Computational Physics, 2010, vol. 229. [ DOI : 10.1016/j.jcp.2009.08.033 ]
[8]
H. Barucq, R. Djellouli, C. Bekkey.
A multi-step procedure for enriching limited two-dimensional acoustic far-field pattern measurements, in: Journal of Inverse and Ill-Posed Problems, 2010, vol. 18, pp. 189-216.
[9]
H. Barucq, R. Djellouli, E. Estecahandy.
Characterization of the Frćhet derivative of the elasto-acoustic field with respect to Lipschitz domains, in: Journal of Inverse and Ill-posed Problems, August 2013. [ DOI : 10.1515/jip-2012-0098 ]
http://hal.inria.fr/hal-00880508
[10]
H. Barucq, A.-G. Dupouy Saint-Guirons, S. Tordeux.
Non-reflecting boundary condition on ellipsoidal boundary, in: Numerical Analysis and Applications, 2012, vol. 5, no 2, pp. 109-115.
http://hal.inria.fr/hal-00760458
[11]
J. Chabassier, S. Imperiale.
Introduction and study of fourth order theta schemes for linear wave equations, in: Journal of Computational and Applied Mathematics, January 2013, vol. 245, pp. 194-212. [ DOI : 10.1016/j.cam.2012.12.023 ]
http://hal.inria.fr/hal-00873048
[12]
P. Dular, V. Péron, R. Perrussel, L. Krähenbühl, C. Geuzaine.
Perfect Conductor and Impedance Boundary Condition Corrections via a Finite Element Subproblem Method, in: IEEE Transactions on Magnetics, February 2014, vol. 50, no 2, 7000504. [ DOI : 10.1109/TMAG.2013.2284338 ]
https://hal.archives-ouvertes.fr/hal-00869987
[13]
S. Tordeux, A. Bendali, P.-H. Cocquet.
Scattering of a scalar time-harmonic wave by N small spheres by the method of matched asymptotic expansions, in: Numerical Analysis and Applications, 2012, vol. 5, no 2, pp. 116-123.
http://hal.inria.fr/hal-00760457
Publications of the year

Doctoral Dissertations and Habilitation Theses

[14]
V. Mattesi.
Small heterogeneities in the context of time-domain wave propagation equation : asymptotic analysis and numerical calculation, Université de Pau et des pays de l'Adour, December 2014.
https://hal.inria.fr/tel-01111046
[15]
F. Ventimiglia.
High Order time and space schemes for the first order wave equation. Application to the Reverse Time Migration, Université de Pau et des Pays de l'Adour, June 2014.
https://tel.archives-ouvertes.fr/tel-01111039

Articles in International Peer-Reviewed Journals

[16]
M. Amara, S. Chaudhry, J. Diaz, R. Djellouli, S. Fiedler.
A local wave tracking strategy for efficiently solving mid-and high-frequency Helmholtz problems, in: Computer Methods in Applied Mechanics and Engineering, 2014, vol. 276, pp. 473–508. [ DOI : 10.1016/j.cma.2014.03.012 ]
https://hal.inria.fr/hal-01010465
[17]
L. Baratchart, Y. Fischer, J. Leblond.
Dirichlet/Neumann problems and Hardy classes for the planar conductivity equation, in: Complex Variables and Elliptic Equations, 2014, 41 p. [ DOI : 10.1080/17476933.2012.755755 ]
https://hal.archives-ouvertes.fr/hal-00909577
[18]
H. Barucq, L. Boillot, H. Calandra, J. Diaz.
Absorbing Boundary Conditions for 2D Tilted Transverse Isotropic Media, in: ESAIM: Proceedings, September 2014, vol. 45, pp. 400-409. [ DOI : 10.1051/proc/201445041 ]
https://hal.inria.fr/hal-01085442
[19]
H. Barucq, H. Calandra, J. Diaz, F. Ventimiglia.
High-Order Time Discretization Of The Wave Equation By Nabla-P Scheme, in: ESAIM: Proceedings, September 2014, vol. 45, pp. 67 - 74. [ DOI : 10.1051/proc/201445007 ]
https://hal.inria.fr/hal-01111071
[20]
H. Barucq, R. Djellouli, E. Estecahandy.
Efficient DG-like formulation equipped with curved boundary edges for solving elasto-acoustic scattering problems, in: International Journal for Numerical Methods in Engineering, 2014, forthcoming.
https://hal.inria.fr/hal-00931852
[21]
H. Barucq, R. Djellouli, E. Estecahandy.
On the existence and the uniqueness of the solution of a fluid-structure interaction scattering problem, in: Journal of Mathematical Analysis and applications, April 2014, vol. 412, no 2, pp. 571-588, forthcoming. [ DOI : 10.1016/j.jmaa.2013.10.081 ]
https://hal.inria.fr/hal-00903365
[22]
M. Castro, J. Diaz, V. Péron.
Equivalent Absorbing Boundary Conditions for Heterogeneous Acoustic Media , in: Trends in Applied and Computational Mathematics, 2014, vol. 15, no 3, 10 p.
https://hal.inria.fr/hal-01110728
[23]
J. Chabassier, M. Duruflé.
Energy based simulation of a Timoshenko beam in non-forced rotation. Application to the flexible piano hammer shank, in: Journal of Sound and Vibration, 2014, vol. 333, no 26, pp. 7198-7215.
https://hal.archives-ouvertes.fr/hal-00918635
[24]
J. Chabassier, M. Duruflé, P. Joly.
Time Domain Simulation of a Piano. Part 2 : Numerical Aspects, in: ESAIM: Mathematical Modelling and Numerical Analysis, October 2014, pp. 1-43, L'article est en cours de revision.
https://hal.archives-ouvertes.fr/hal-01085477
[25]
M. Dauge, P. Dular, L. Krähenbühl, V. Péron, R. Perrussel, C. Poignard.
Corner asymptotics of the magnetic potential in the eddy-current model, in: Mathematical Methods in the Applied Sciences, 2014, vol. 37, no 13, pp. 1924-1955. [ DOI : 10.1002/mma.2947 ]
https://hal.inria.fr/hal-00779067
[26]
P. Dular, V. Péron, L. Krähenbühl, C. Geuzaine.
Progressive eddy current modeling via a finite element subproblem method, in: International Journal of Applied Electromagnetics and Mechanics, June 2014, vol. 46, no 2, pp. 341-348. [ DOI : 10.3233/JAE-141943 ]
https://hal.archives-ouvertes.fr/hal-01071480
[27]
P. Dular, V. Péron, R. Perrussel, L. Krähenbühl, C. Geuzaine.
Perfect Conductor and Impedance Boundary Condition Corrections via a Finite Element Subproblem Method, in: IEEE Transactions on Magnetics, February 2014, vol. 50, no 2, 7000504. [ DOI : 10.1109/TMAG.2013.2284338 ]
https://hal.archives-ouvertes.fr/hal-00869987
[28]
M. Duruflé, V. Péron, C. Poignard.
Thin Layer Models For Electromagnetism, in: Communications in Computational Physics, 2014, vol. 16, pp. 213-238. [ DOI : 10.4208/cicp.120813.100114a ]
https://hal.archives-ouvertes.fr/hal-00918634
[29]
L. Farina, P. A. Martin, V. Péron.
Hypersingular integral equations over a disc: convergence of a spectral method and connection with Tranter's method, in: Journal of Computational and Applied Mathematics, 2014, vol. 269, pp. 118-131. [ DOI : 10.1016/j.cam.2014.03.014 ]
https://hal.inria.fr/hal-00971497
[30]
S. Laurens, E. Piot, A. Bendali, M. Fares, S. Tordeux.
Effective conditions for the reflection of an acoustic wave by low-porosity perforated plates, in: Journal of Fluid Mechanics, 2014, forthcoming.
https://hal.archives-ouvertes.fr/hal-00769393
[31]
V. Péron.
Equivalent boundary conditions for an elasto-acoustic problem set in a domain with a thin layer, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2014, vol. 48, no 5, pp. 1431-1449. [ DOI : 10.1051/m2an/2014002 ]
https://hal.inria.fr/hal-00925643
[32]
S. Shannon, V. Péron, Z. Yosibash.
Singular asymptotic solution along an elliptical edge for the Laplace equation in 3-D, in: Engineering Fracture Mechanics, 2015, 16 p.
https://hal.inria.fr/hal-01097676
[33]
S. Shannon, V. Péron, Z. Yosibash.
The Laplace equation in 3-D domains with cracks: Dual singularities with log terms and extraction of corresponding edge flux intensity functions , in: Mathematical Methods in the Applied Sciences, 2015, 14 p.
https://hal.inria.fr/hal-01111593

International Conferences with Proceedings

[34]
H. Barucq, H. Calandra, T. Chaumont Frelet, C. Gout.
Helmholtz Equation in Highly Heterogeneous Media, in: Second Russian-French Workshop "Computational Geophysics", Novosibirsk, Russia, September 2014.
https://hal.inria.fr/hal-01100478
[35]
H. Barucq, H. Calandra, T. Chaumont Frelet, C. Gout.
Helmholtz equation in Highly Heterogeneous Media, in: 11th World Congress on Computational Mechanics, Barcelone, Spain, Eccomas, July 2014.
https://hal.inria.fr/hal-01100492
[36]
H. Barucq, H. Calandra, T. Chaumont Frelet, C. Gout.
Helmholtz Equation in Highly Heterogeneous Media: a two Scales Analysis, in: Third international workshop on multiphysics, multiscale and optimization problem, Bilbao, Spain, May 2014.
https://hal.inria.fr/hal-01100475
[37]
H. Barucq, H. Calandra, J. Diaz, J. Luquel.
Imaging of complex media with elastic wave equations, in: 2014 eccomas, barcelone, Spain, July 2014.
https://hal.inria.fr/hal-01096616
[38]
L. Boillot, H. Barucq, H. Calandra, J. Diaz.
(Portable) Task-based programming model for elastodynamics, in: EAGE workshop on HPC for Upstream, Chania, Greece, September 2014.
https://hal.inria.fr/hal-01070015
[39]
L. Boillot, G. Bosilca, E. Agullo, H. Calandra.
Portable Task-based programming for seismic imaging, in: MATHIAS – TOTAL Symposium on Mathematics, Paris, France, October 2014.
https://hal.inria.fr/hal-01085333
[40]
L. Boillot, G. Bosilca, E. Agullo, H. Calandra.
Task-based programming for Seismic Imaging: Preliminary Results, in: 2014 IEEE International Conference on High Performance Computing and Communications (HPCC), PARIS, France, August 2014.
https://hal.inria.fr/hal-01057580
[41]
M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Discontinuous Galerkin methods for solving Helmholtz elastic wave equations for seismic imaging, in: WCCM XI - ECCM V - ECFD VI - Barcelona 2014, Barcelone, Spain, July 2014.
https://hal.inria.fr/hal-01096324
[42]
M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Hybridizable Discontinuous Galerkin method for solving Helmholtz elastic wave equations, in: EAGE Workshop on High Performance Computing for Upstream, Chania, Greece, September 2014.
https://hal.inria.fr/hal-01096385
[43]
M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Performance analysis of DG and HDG methods for the simulation of seismic wave propagation in harmonic domain, in: Second Russian-French Workshop "Computational Geophysics", Berdsk, Russia, September 2014.
https://hal.inria.fr/hal-01096392
[44]
J. Chabassier, S. Imperiale.
Fourth order energy-preserving localy implicit discretization for linear wave equations, in: Second French-Russian Workshop on Computational Geophysics, Novosibirsk, Russia, September 2014.
https://hal.inria.fr/hal-01067115
[45]
J. Chabassier, S. Imperiale.
High order theta schemes for linear wave equation, in: 11th world congress on computational mechanics (WCCM), Barcelone, Spain, July 2014, pp. 1-2.
https://hal.archives-ouvertes.fr/hal-01051808
[46]
P. Dular, V. Péron, L. Krähenbühl, C. Geuzaine.
Subproblem Finite Element Refinement of Inductors from Wire to Static and Dynamic Volume Models, in: CEFC, Annecy, France, Proc. of the 16th Biennial IEEE Conference on Electromagnetic Field Computation, May 2014, CD.
https://hal.archives-ouvertes.fr/hal-00959756
[47]
A. Erdozain, D. Pardo, V. Péron.
Fast Simulation of Through-casing Resistivity Measurements Using Semi-analytical Asymptotic Models. Part 1: Accuracy Study, in: EAGE Workshop on High Performance Computing for Upstream, Crete, Greece, September 2014.
https://hal.inria.fr/hal-01096897
[48]
F. Faucher, J. Shi, M. V. de Hoop, H. Calandra.
Multi-level elastic full waveform inversion in isotropic media via quantitative Lipschitz stability estimates, in: Project Review Meeting, Chicago, United States, Geo-Mathematical Imaging Group, Department of Mathematics, Purdue University, April 2014.
https://hal.archives-ouvertes.fr/hal-01096249
[49]
F. Faucher, J. Shi, M. V. de Hoop, H. Calandra.
Multi-level elastic full waveform inversion in isotropic media via quantitative Lipschitz stability estimates, in: MATHIAS – TOTAL Symposium on Mathematics, Paris, France, TOTAL, October 2014.
https://hal.archives-ouvertes.fr/hal-01096272
[50]
L. Krähenbühl, P. Dular, V. Péron, R. Perrussel, C. Poignard, R. V. Sabariego.
Asymptotic delta-Parameterization of Surface-Impedance Solutions, in: CEFC, Annecy, France, Proc. of the 16th Biennial IEEE Conference on Electromagnetic Field Computation, May 2014, CD.
https://hal.archives-ouvertes.fr/hal-00959750
[51]
V. Popie, E. Piot, S. Tordeux, V. François.
Theoretical and numerical investigation of acoustic response of a multiperforated plate for combustor liner, in: ASME Turbo Expo 2015 : Turbine Technical Conference and Exposition, Montreal, Canada, June 2015.
https://hal.inria.fr/hal-01111467

National Conferences with Proceedings

[52]
L. Boillot, H. Barucq, J. Diaz, H. Calandra.
Optimized wave propagation for geophysics, in: Journée scientifique du MCIA (Mésocentre de Calcul Intensif Aquitain), Pau, France, February 2014.
https://hal.inria.fr/hal-01057582
[53]
M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Numerical schemes for the simulation of seismic wave propagation in frequency domain, in: Réunion des Sciences de la Terre 2014, Pau, France, October 2014.
https://hal.inria.fr/hal-01096390

Conferences without Proceedings

[54]
H. Barucq, H. Calandra, J. Diaz, F. Ventimiglia.
Arbitrary High Order Time Scheme for Wave Equation, in: The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Madrid, Spain, July 2014.
https://hal.inria.fr/hal-01111091
[55]
H. Barucq, H. Calandra, J. Diaz, F. Ventimiglia.
High order schemes for the first order formulation of the wave equation. Application to seismic imaging, in: Journées Ondes du Sud-Ouest, Toulouse, France, February 2014.
https://hal.inria.fr/hal-01111082
[56]
H. Barucq, R. Djellouli, E. Estecahandy.
Shape Reconstruction of Non-convex Elastic Scatterers Using a Regularized Newton-type Method, in: The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Madrid, Spain, July 2014.
https://hal.inria.fr/hal-01111089
[57]
L. Boillot, H. Barucq, J. Diaz, H. Calandra.
Absorbing Boundary Conditions for Tilted Transverse Isotropic elastic media, in: ECCOMAS, WCCM XI - ECCM V - ECFD VI, Barcelona, Spain, July 2014.
https://hal.inria.fr/hal-01057581
[58]
J. Chabassier, S. Imperiale.
Fourth order energy-preserving locally implicit discretization for linear wave equations, in: Franco-Russian workshop on mathematical geophysics, Novosibirsk, Russia, September 2014.
https://hal.archives-ouvertes.fr/hal-01051807
[59]
J. Chabassier, S. Imperiale.
Introduction and study of fourth order theta schemes for linear wave equations, in: Journées Ondes du Sud-Ouest, Toulouse, France, February 2014, COM.
https://hal.archives-ouvertes.fr/hal-01051803
[60]
F. Collino, M. Duruflé, P. Joly, M. Lecouvez.
Optimized Transmission Conditions for Domain Decomposition Methods and Helmholtz Equation. Application to Higher Order Finite Element Methods, in: International Conference on Spectral and High Order Methods 2014, Salt Lake City, United States, June 2014.
https://hal.archives-ouvertes.fr/hal-01110763

Internal Reports

[61]
H. Barucq, M. Bergot, J. Chabassier, E. Estecahandy.
Derivation of high order absorbing boundary conditions for the Helmholtz equation in 2D, Inria Bordeaux, November 2014, no RR-8632.
https://hal.inria.fr/hal-01085180
[62]
J. Chabassier, M. Durufle.
Energy based simulation of a Timoshenko beam in non-forced rotation. Application to the flexible piano hammer shank, January 2014, no RR-8450, 24 p.
https://hal.inria.fr/hal-00929938

Scientific Popularization

[63]
J. Chabassier, A. Chaigne, M. Durufle, P. Joly.
Le piano rêvé des mathématiciens, in: Interstices, April 2014.
https://hal.inria.fr/hal-01054389

Other Publications

[64]
H. Barucq, H. Calandra, T. Chaumont Frelet, C. Gout.
High Order Methods for Helmholtz Problems in Highly Heterogeneous Media, October 2014, Journées Total-Mathias 2014.
https://hal.inria.fr/hal-01100468
[65]
A. Bendali, P.-H. Cocquet, S. Tordeux.
Approximation by multipoles of the multiple acoustic scattering by small obstacles and application to the Foldy theory of isotropic scattering, July 2014.
https://hal.archives-ouvertes.fr/hal-01025436
[66]
M. Bonnasse-Gahot, S. Lanteri, J. Diaz, H. Calandra.
Performance comparison of HDG and classical DG method for the simulation of seismic wave propagation in harmonic domain, October 2014, Journées Total-Mathias 2014.
https://hal.inria.fr/hal-01096318
[67]
J. Luquel, H. Barucq, J. Diaz, H. Calandra.
Imaging of complex media with elastic wave equations, May 2014, SIAM Conference on IMAGING SCIENCE.
https://hal.inria.fr/hal-01096620
References in notes
[68]
C. Agut, J. Diaz.
Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation., in: ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2013, vol. 47(3), pp. 903-932.
[69]
I. Babuška, W. C. Rheinboldt.
A-posteriori error estimates for the finite element method, in: International Journal for Numerical Methods in Engineering, 1978, vol. 12, no 10, pp. 1597–1615.
[70]
I. Babuška, W. Rheinboldt.
Adaptive approaches and reliability estimations in finite element analysis, in: Computer Methods in Applied Mechanics and Engineering, 1979, vol. 17, pp. 519–540.
[71]
E. Baysal, D. D. Kosloff, J. W. C. Sherwood.
Reverse-time migration, in: Geophysics, 1983, vol. 48, pp. 1514-1524.
[72]
J. Chabassier, S. Imperiale.
Introduction and study of fourth order theta schemes for linear wave equations, in: Journal of Computational and Applied Mathematics, January 2013, vol. 245, pp. 194-212. [ DOI : 10.1016/j.cam.2012.12.023 ]
https://hal.inria.fr/hal-00873048
[73]
B. Cockburn, J. Gopalakrishnan, R. Lazarov.
Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM Journal on Numerical Analysis, 2009, vol. 47, no 2, pp. 1319–1365.
[74]
G. Cohen.
Higher-order numerical methods for transient wave equations, Springer-Verlag, 2001.
[75]
M. A. Dablain.
The application of high-order differencing to the scalar wave equation, in: Geophysics, 1986, vol. 51, no 1, pp. 54-66.
[76]
B. Engquist, A. Majda..
Absorbing boundary conditions for the numerical simulation of waves., in: Math. Comp., 1977, vol. 31, pp. 629–651.
[77]
L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.
Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 2005, vol. 39, no 6, pp. 1149-1176.
http://eudml.org/doc/244803
[78]
M. Grigoroscuta-Strugaru, M. Amara, H. Calandra, R. Djellouli.
A Modified Discontinuous Galerkin Method for Solving Efficiently Helmholtz Problems, in: Communications in Computational Physics, 2012, vol. 11, no 2, 335 p.
[79]
M. Käser, M. Dumbser.
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-I. The two-dimensional isotropic case with external source terms, in: Geophys. J. Int., 2006, vol. 166, no 2, pp. 855-877.
http://dx.doi.org/10.1111/j.1365-246X.2006.03051.x
[80]
L. Nirenberg..
Lectures on linear partial differential equations., in: CBMS Regional Conference Series in Mathematics, 1973, vol. 17.
[81]
J. T. Oden, S. Prudhomme.
Goal-oriented error estimation and adaptivity for the finite element method, in: Comput. Math. Appl., 2001, vol. 41, no 5-6, pp. 735–756.
http://dx.doi.org/10.1016/S0898-1221(00)00317-5
[82]
S. Prudhomme, J. T. Oden.
On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, in: Comput. Methods Appl. Mech. Engrg., 1999, vol. 176, no 1-4, pp. 313–331, New advances in computational methods (Cachan, 1997).
http://dx.doi.org/10.1016/S0045-7825(98)00343-0
[83]
G. R. Shubin, J. B. Bell.
A modified equation approach to constructing fourth-order methods for acoustic wave propagation, in: SIAM J. Sci. Statist. Comput., 1987, vol. 8, pp. 135–151.
[84]
M. Taylor..
Reflection of singularities of solutions to systems of differential equations., in: Comm. Pure and Appl. Math., 1975, vol. 28(4), pp. 457–478.
[85]
S. Tsynkov..
Numerical solution of problems on unbounded domains. a review., in: Appli. Num. Math., 198, pp. 465–532.