Members
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

[1]
A. Allouhi, T. Kousksou, A. Jamil, P. Bruel, Y. Mourad, Y. Zeraouli.
Solar driven cooling systems: An updated review, in: Renewable and Sustainable Energy Review, April 2015, vol. 44, pp. 159–181. [ DOI : 10.1016/j.rser.2014.12.014 ]
https://hal.inria.fr/hal-01107607
[2]
J.-P. Dumas, S. Gibout, L. Zalewski, K. Johannes, E. Franquet, J.-P. Bédécarrats, P. Tittelein, F. Kuznik.
Interpretation of calorimetry experiments to characterise phase change materials, in: International Journal of Thermal Sciences, April 2014, vol. 78, pp. 48-55. [ DOI : 10.1016/j.ijthermalsci.2013.11.014 ]
https://hal.archives-ouvertes.fr/hal-01016397
[3]
T. Kousksou, P. Bruel, A. Jamil, T. El Rhafiki, Y. Zeraouli.
Energy storage: Applications and challenges, in: Solar Energy Materials and Solar Cells, 2014, vol. 120, pp. 59-90.
https://hal.inria.fr/hal-00930130
[4]
R. Manceau.
Recent progress in the development of the Elliptic Blending Reynolds-stress model, in: International Journal of Heat and Fluid Flow, 2015, 32 p. [ DOI : 10.1016/j.ijheatfluidflow.2014.09.002 ]
https://hal.inria.fr/hal-01092931
[5]
R. Manceau, R. Perrin, M. Hadziabdic, S. Benhamadouche.
Investigation of the interaction of a turbulent impinging jet and a heated, rotating disk, in: Phys. Fluids, 2014, vol. 26, no 3, ACL.
https://hal.archives-ouvertes.fr/hal-01051796
[6]
Y. Moguen, P. Bruel, V. Perrier, E. Dick.
Non-reflective inlet conditions for the calculation of unsteady turbulent compressible flows at low Mach number, in: Mechanics and Industry, March 2014, vol. 15, no 3, pp. 179-189. [ DOI : 10.1051/meca/2014027 ]
https://hal.inria.fr/hal-01009979
[7]
Y. Moguen, S. Delmas, V. Perrier, P. Bruel, E. Dick.
Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations, in: Journal of Computational Physics, January 2015, vol. 281, 35 p. [ DOI : 10.1016/j.jcp.2014.10.041 ]
https://hal.inria.fr/hal-01096422

International Conferences with Proceedings

[8]
S. Delmas, V. Perrier, P. Bruel.
A stable and accurate compressible low Mach scheme for unsteady flow calculation, in: European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2014), Barcelona, Spain, July 2014.
https://hal.inria.fr/hal-01079763
[9]
S. Lardeau, R. Manceau.
Computations of canonical and complex flow configurations using a robust formulation of the elliptic-blending Reynolds-Stress model, in: Proc. 10th ERCOFTAC Int. Symp. on Eng. Turb. Modelling and Measurements, Marbella, Spain, 2014, ACT.
https://hal.archives-ouvertes.fr/hal-01051799
[10]
Y. Moguen, P. Bruel, E. Dick.
Solving low Mach number Riemann problems by momentum interpolation, in: 6th International Conference on Advanced Computational Methods in Engineering (ACOMEN 2014), Ghent, Belgium, June 2014.
https://hal.inria.fr/hal-01079741
[11]
Y. Moguen, S. Dellacherie, P. Bruel, E. Dick.
Momentum interpolation for quasi one-dimensional unsteady low Mach number flows with acoustics, in: European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2014), Barcelona, Spain, July 2014.
https://hal.inria.fr/hal-01079747
[12]
Y. Moguen, S. Delmas, V. Perrier, P. Bruel, E. Dick.
Inertia terms for all Mach number Godunov-type schemes: behavior of unsteady solutions at low Mach number, in: 8th International Conference on Computational Fluid Dynamics, Chengdu, China, July 2014.
https://hal.inria.fr/hal-01079755
[13]
J.-F. Wald, S. Benhamadouche, R. Manceau.
Adaptive wall treatment for the elliptic blending Reynolds stress model, in: Proc. 10th ERCOFTAC Int. Symp. on Eng. Turb. Modelling and Measurements, Marbella, Spain, 2014, ACT.
https://hal.archives-ouvertes.fr/hal-01051800

Scientific Books (or Scientific Book chapters)

[14]
R. Abgrall, H. Beaugendre, P. M. Congedo, C. Dobrzynski, V. Perrier, M. Ricchiuto.
High Order Nonlinear Numerical Schemes for Evolutionary PDEs, Lecture Notes in Computational Science and Engineering, Springer, January 2014, vol. 99.
https://hal.inria.fr/hal-01092349

Other Publications

[15]
R. Manceau.
La simulation numérique de la turbulence en LES, 2014, Formation continue EUROSAE: La simulation numérique en mécanique des fluides compressibles.
https://hal.inria.fr/hal-01092935
References in notes
[16]
F. Bassi, A. Crivellini, S. Rebay, M. Savini.
Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, pp. 507-540.
[17]
F. Bassi, S. Rebay.
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, pp. 267–279.
http://dx.doi.org/10.1006/jcph.1996.5572
[18]
V. Billey, J. Periaux, B. Stoufflet, A. Dervieux, L. Fezoui, V. Selmin.
Recent improvements in Galerkin and upwind Euler solvers and application to 3-D transonic flow in aircraft design, in: Computer Methods in Applied Mechanics and Engineering, 1989, vol. 75, no 1-3, pp. 409-414.
[19]
B. Cockburn, S. Hou, C.-W. Shu.
The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, pp. 545–581.
http://dx.doi.org/10.2307/2008501
[20]
B. Cockburn, S. Y. Lin, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, pp. 90–113.
[21]
B. Cockburn, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, pp. 411–435.
http://dx.doi.org/10.2307/2008474
[22]
B. Cockburn, C.-W. Shu.
The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, pp. 337–361.
[23]
B. Cockburn, C.-W. Shu.
The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, pp. 199–224.
http://dx.doi.org/10.1006/jcph.1998.5892
[24]
S. S. Colis.
Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002.
[25]
M. Feistauer, V. Kučera.
On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, pp. 208–221.
http://dx.doi.org/10.1016/j.jcp.2007.01.035
[26]
J.-L. Florenciano.
Étude de la réponse d'un écoulement avec transfert pariétal de masse à un forçage acoustique, Pau University, 2013.
[27]
R. J. Goldstein, E. Eckert, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulacki, U. Kortshagen, S. Garrick.
Heat transfer - A review of 2000 literature, in: International Journal of Heat and Mass Transfer, 2002, vol. 45, no 14, pp. 2853-2957. [ DOI : DOI: 10.1016/S0017-9310(02)00027-3 ]
[28]
R. Hartmann, P. Houston.
Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, pp. 1–20.
[29]
R. Hartmann, P. Houston.
Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. II. Goal-oriented a posteriori error estimation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 2, pp. 141–162.
[30]
C. Johnson, A. Szepessy, P. Hansbo.
On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, pp. 107–129.
http://dx.doi.org/10.2307/2008684
[31]
H. Lee, J. Park, J. Lee.
Flow visualization and film cooling effectiveness measurements around shaped holes with compound angle orientations, in: Int. J. Heat Mass Transfer, 2002, vol. 45, pp. 145-156.
[32]
P. Lesaint, P.-A. Raviart.
On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, no 33, pp. 89–123.
[33]
F. Lörcher, G. Gassner, C.-D. Munz.
An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, pp. 5649–5670.
http://dx.doi.org/10.1016/j.jcp.2008.02.015
[34]
R. Margason.
Fifty Years of Jet in Cross Flow Research, in: NATO AGARD Conference, Winchester, UK, 1993, vol. CP-534, pp. 1.1-1.41.
[35]
A. Most.
Étude numérique et expérimentale des écoulements pariétaux avec transfert de masse à travers une paroi multi-perforée, Pau University, 2007.
[36]
A. Most, N. Savary, C. Bérat.
Reactive flow modelling of a combustion chamber with a multiperforated liner, in: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, AIAA Paper 2007-5003, 8-11 July 2007.
[37]
E. Motheau, T. Lederlin, P. Bruel.
LES investigation of the flow through an effusion-cooled aeronautical combustor model, in: 8th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Marseille, France, June 2010, pp. 872-877.
[38]
C. Prière.
Simulation aux grandes échelles: application au jet transverse, INP Toulouse, 2005.
[39]
W. Reed, T. Hill.
Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479.
[40]
S. Smith, M. Mungal.
Mixing, structure and scaling of the jet in crossflow, in: Journal of Fluid Mechanics, 1998, vol. 357, pp. 83-122.