Members
Overall Objectives
Research Program
Application Domains
Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
G. Barthe, B. Grégoire, S. Heraud, S. Z. Béguelin.
Computer-Aided Security Proofs for the Working Cryptographer, in: Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, Lecture Notes in Computer Science, Springer, 2011, vol. 6841, pp. 71-90, Best Paper Award.
[2]
Y. Bertot, P. Castéran.
Interactive Theorem Proving and Program Development, Coq'Art:the Calculus of Inductive Constructions, Springer-Verlag, 2004.
[3]
Y. Bertot, G. Gonthier, S. O. Biha, I. Paşca.
Canonical Big Operators, in: Proceedings of the 21st International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2008), Lecture Notes in Computer Science, Springer, August 2008, vol. 5170, pp. 12–16.
http://hal.inria.fr/inria-00331193/
[4]
G. Gonthier, A. Mahboubi, L. Rideau, E. Tassi, L. Théry.
A Modular Formalisation of Finite Group Theory, in: Proceedings of the 20th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2007), K. Schneider, J. Brandt (editors), LNCS, Springer-Verlag, September 2007, vol. 4732, pp. 86-101.
http://hal.inria.fr/inria-00139131
Publications of the year

Doctoral Dissertations and Habilitation Theses

[5]
M. Dénès.
Étude formelle d'algorithmes efficaces en algèbre linéaire, Université Nice Sophia Antipolis, November 2013.
http://hal.inria.fr/tel-00945775

Articles in International Peer-Reviewed Journals

[6]
G. Barthe, B. Grégoire, S. Heraud, F. Olmedo, S. Zanella Beguelin.
Verified indifferentiable hashing into elliptic curves, in: Journal of Computer Security, November 2013.
http://hal.inria.fr/hal-00935747
[7]
É. Martin-Dorel, G. Melquiond, J.-M. Muller.
Some issues related to double roundings, in: BIT Numerical Mathematics, December 2013, vol. 53, no 4, pp. 897-924. [ DOI : 10.1007/s10543-013-0436-2 ]
http://hal.inria.fr/ensl-00644408
[8]
J. Zsidó.
Theorem of three circles in Coq, in: Journal of Automated Reasoning, December 2013, 25 p. [ DOI : 10.1007/s10817-013-9299-0 ]
http://hal.inria.fr/hal-00864827

International Conferences with Proceedings

[9]
G. Barthe, J. M. Crespo, B. Gregoire, C. Kunz, Y. Lakhnech, B. Schmidt, S. Zanella Beguelin.
Fully automated analysis of padding-based encryption in the computational model, in: 2013 ACM SIGSAC Conference on Computer and Communications Security, Berlin, Germany, ACM, November 2013, pp. 1247-1260. [ DOI : 10.1145/2508859.2516663 ]
http://hal.inria.fr/hal-00935737
[10]
G. Barthe, G. Danezis, B. Grégoire, C. Kunz, S. Zanella Beguelin.
Verified Computational Differential Privacy with Applications to Smart Metering, in: 2013 IEEE 26th Computer Security Foundations Symposium, New Orleans, United States, IEEE Computer Society, June 2013, pp. 287-301. [ DOI : 10.1109/CSF.2013.26 ]
http://hal.inria.fr/hal-00935736
[11]
G. Barthe, C. Fournet, B. Gregoire, P.-Y. Strub, N. Swamy, S. Zanella Beguelin.
Probabilistic relational verification for cryptographic implementations, in: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, United States, January 2014.
http://hal.inria.fr/hal-00935743
[12]
G. Cano, M. Dénès.
Matrices à blocs et en forme canonique, in: JFLA - Journées francophones des langages applicatifs, Aussois, France, D. Pous, C. Tasson (editors), Damien Pous and Christine Tasson, February 2013.
http://hal.inria.fr/hal-00779376
[13]
G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Le Roux, A. Mahboubi, R. O'Connor, S. Ould Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi, L. Théry.
A Machine-Checked Proof of the Odd Order Theorem, in: ITP 2013, 4th Conference on Interactive Theorem Proving, Rennes, France, S. Blazy, C. Paulin, D. Pichardie (editors), LNCS, Springer, 2013, vol. 7998, pp. 163-179. [ DOI : 10.1007/978-3-642-39634-2_14 ]
http://hal.inria.fr/hal-00816699
[14]
É. Martin-Dorel, M. Mayero, I. Pasca, L. Rideau, L. Théry.
Certified, Efficient and Sharp Univariate Taylor Models in COQ, in: SYNASC 2013 - 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 2013.
http://hal.inria.fr/hal-00845791
[15]
Q. Wang, B. Barras.
Semantics of Intensional Type Theory extended with Decidable Equational Theories, in: Computer Science Logic 2013, Dagstuhl, Germany, S. R. D. Rocca (editor), Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, August 2013, vol. 23, pp. 653–667. [ DOI : 10.4230/LIPIcs.CSL.2013.653 ]
http://hal.inria.fr/hal-00937197

Scientific Books (or Scientific Book chapters)

[16]
P. Aczel, B. Ahrens, T. Altenkirch, S. Awodey, B. Barras, A. Bauer, Y. Bertot, M. Bezem, T. Coquand, E. Finster, D. Grayson, H. Herbelin, A. Joyal, D. Licata, P. Lumsdaine, A. Mahboubi, P. Martin-Löf, S. Melikhov, A. Pelayo, A. Polonsky, M. Shulman, M. Sozeau, B. Spitters, B. Van Den Berg, V. Voevodsky, M. Warren, C. Angiuli, A. Bordg, G. Brunerie, C. Kapulkin, E. Rijke, K. Sojakova, J. Avigad, C. Cohen, R. Constable, P.-L. Curien, P. Dybjer, M. Escardó, K.-B. Hou, N. Gambino, R. Garner, G. Gonthier, T. Hales, R. Harper, M. Hofmann, P. Hofstra, J. Koch, N. Kraus, N. Li, Z. Luo, M. Nahas, E. Palmgren, E. Riehl, D. Scott, P. Scott, S. Soloviev.
Homotopy Type Theory: Univalent Foundations of Mathematics, Aucun, 2013, 448 p.
http://hal.inria.fr/hal-00935057

Internal Reports

[17]
J. Grimm.
Implementation of Bourbaki's Elements of Mathematics in Coq: Part One, Theory of Sets, Inria, 2013, no RR-6999, 205 p.
http://hal.inria.fr/inria-00408143
[18]
J. Grimm.
Implementation of Bourbaki's Elements of Mathematics in Coq: Part Two; Ordered Sets, Cardinals, Integers, Inria, 2013, no RR-7150, 604 p.
http://hal.inria.fr/inria-00440786
[19]
J. Grimm.
Implementation of three types of ordinals in Coq, Inria, 2013, no RR-8407, 74 p.
http://hal.inria.fr/hal-00911710

Other Publications

[20]
É. Martin-Dorel, G. Hanrot, M. Mayero, L. Théry.
Formally verified certificate checkers for hardest-to-round computation, December 2013.
http://hal.inria.fr/hal-00919498