Members
Overall Objectives
Research Program
Application Domains
Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

[1]
E. Franquet, V. Perrier.
Runge-Kutta discontinuous Galerkin method for reactive multiphase flows, in: Computers and Fluids, August 2013, vol. 83, pp. 157-163. [ DOI : 10.1016/j.compfluid.2012.07.011 ]
http://hal.inria.fr/hal-00788235
[2]
D. Mbengoue, D. Genet, C. Lachat, E. Martin, M. Mogé, V. Perrier, F. Renac, M. Ricchiuto, F. Rue.
Comparison of high order algorithms in Aerosol and Aghora for compressible flows, in: ESAIM: Proceedings, December 2013, vol. 43, pp. 1-16.
http://hal.inria.fr/hal-00917411
[3]
Y. Moguen, P. Bruel, E. Dick.
Semi-implicit characteristic-based boundary treatment for acoustics in low Mach number flows, in: Journal of Computational Physics, 2013, vol. 255, pp. 339-361. [ DOI : 10.1016/j.jcp.2013.08.019 ]
http://hal.inria.fr/hal-00929713
[4]
Y. Moguen, E. Dick, J. Virendeels, P. Bruel.
Pressure-velocity coupling for unsteady low Mach number flow simulations: an improvement of the AUSM+-up scheme, in: Journal of Computational and Applied Mathematics, 2013, vol. 246, pp. 136-143, This article belongs to a special issue Fifth International Conference on Advanced COmputational Methods in ENgineering (ACOMEN 2011). [ DOI : 10.1016/j.cam.2012.10.029 ]
http://hal.inria.fr/hal-00929726

National Conferences with Proceedings

[5]
Y. Moguen, P. Bruel, V. Perrier, E. Dick.
Conditions d'entrée non réfléchissantes pour le calcul des écoulements instationnaires turbulents compressibles à bas nombre de Mach, in: 21ème Congrès Français de Mécanique, Bordeaux, France, AFM, Maison de la Mécanique, 39/41 rue Louis Blanc, 92400 Courbevoie, France(FR), 2013.
http://hal.inria.fr/hal-00930043

Conferences without Proceedings

[6]
S. Delmas, V. Perrier, P. Bruel.
Behaviour of upwind schemes in low Mach number flow, in: 2nd ECCOMAS Young Investigators Conference (YIC 2013), Bordeaux, France, September 2013.
http://hal.inria.fr/hal-00855904

Internal Reports

[7]
D. Amenga Mbengoue, D. Genet, C. Lachat, E. Martin, M. Mogé, V. Perrier, F. Renac, F. Rue, M. Ricchiuto.
Comparison of algorithm in Aerosol and Aghora for compressible flows, Inria, January 2013, no RR-8200.
http://hal.inria.fr/hal-00773531
References in notes
[8]
F. Bassi, A. Crivellini, S. Rebay, M. Savini.
Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, pp. 507-540.
[9]
F. Bassi, S. Rebay.
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, pp. 267–279.
http://dx.doi.org/10.1006/jcph.1996.5572
[10]
V. Billey, J. Periaux, B. Stoufflet, A. Dervieux, L. Fezoui, V. Selmin.
Recent improvements in Galerkin and upwind Euler solvers and application to 3-D transonic flow in aircraft design, in: Computer Methods in Applied Mechanics and Engineering, 1989, vol. 75, no 1-3, pp. 409-414.
[11]
B. Cockburn, S. Hou, C.-W. Shu.
The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, pp. 545–581.
http://dx.doi.org/10.2307/2008501
[12]
B. Cockburn, S. Y. Lin, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, pp. 90–113.
[13]
B. Cockburn, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, pp. 411–435.
http://dx.doi.org/10.2307/2008474
[14]
B. Cockburn, C.-W. Shu.
The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, pp. 337–361.
[15]
B. Cockburn, C.-W. Shu.
The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, pp. 199–224.
http://dx.doi.org/10.1006/jcph.1998.5892
[16]
S. S. Colis.
Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002.
[17]
M. Feistauer, V. Kučera.
On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, pp. 208–221.
http://dx.doi.org/10.1016/j.jcp.2007.01.035
[18]
J.-L. Florenciano.
Étude de la réponse d'un écoulement avec transfert pariétal de masse à un forçage acoustique, Pau University, 2013.
[19]
R. J. Goldstein, E. Eckert, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulacki, U. Kortshagen, S. Garrick.
Heat transfer - A review of 2000 literature, in: International Journal of Heat and Mass Transfer, 2002, vol. 45, no 14, pp. 2853-2957. [ DOI : DOI: 10.1016/S0017-9310(02)00027-3 ]
[20]
H. Guillard, C. Viozat.
On the behaviour of upwind schemes in the low Mach number limit, in: Computers & Fluids, January 1999, vol. 28, no 1, pp. 63–86. [ DOI : 10.1016/S0045-7930(98)00017-6 ]
http://linkinghub.elsevier.com/retrieve/pii/S0045793098000176
[21]
R. Hartmann, P. Houston.
Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, pp. 1–20.
[22]
R. Hartmann, P. Houston.
Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. II. Goal-oriented a posteriori error estimation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 2, pp. 141–162.
[23]
C. Johnson, A. Szepessy, P. Hansbo.
On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, pp. 107–129.
http://dx.doi.org/10.2307/2008684
[24]
H. Lee, J. Park, J. Lee.
Flow visualization and film cooling effectiveness measurements around shaped holes with compound angle orientations, in: Int. J. Heat Mass Transfer, 2002, vol. 45, pp. 145-156.
[25]
P. Lesaint, P.-A. Raviart.
On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, no 33, pp. 89–123.
[26]
F. Lörcher, G. Gassner, C.-D. Munz.
An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, pp. 5649–5670.
http://dx.doi.org/10.1016/j.jcp.2008.02.015
[27]
R. Margason.
Fifty Years of Jet in Cross Flow Research, in: NATO AGARD Conference, Winchester, UK, 1993, vol. CP-534, pp. 1.1-1.41.
[28]
A. Most.
Étude numérique et expérimentale des écoulements pariétaux avec transfert de masse à travers une paroi multi-perforée, Pau University, 2007.
[29]
A. Most, N. Savary, C. Bérat.
Reactive flow modelling of a combustion chamber with a multiperforated liner, in: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, AIAA Paper 2007-5003, 8-11 July 2007.
[30]
E. Motheau, T. Lederlin, P. Bruel.
LES investigation of the flow through an effusion-cooled aeronautical combustor model, in: 8th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Marseille, France, June 2010, pp. 872-877.
[31]
C. Prière.
Simulation aux grandes échelles: application au jet transverse, INP Toulouse, 2005.
[32]
W. Reed, T. Hill.
Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479.
[33]
F. Rieper, G. Bader.
The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime, in: Journal of Computational Physics, May 2009, vol. 228, no 8, pp. 2918–2933. [ DOI : 10.1016/j.jcp.2009.01.002 ]
http://linkinghub.elsevier.com/retrieve/pii/S0021999109000096
[34]
S. Smith, M. Mungal.
Mixing, structure and scaling of the jet in crossflow, in: Journal of Fluid Mechanics, 1998, vol. 357, pp. 83-122.