Members
Overall Objectives
Research Program
Application Domains
Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1][refercite:Bok-Bru-Mar-Zid-2009]
O. Bokanowski, B. Bruder, S. Maroso, H. Zidani.
Numerical approximation for a superreplication problem under gamma constraints, in: SIAM. Num. Analysis., 2009, vol. 47(3), pp. 2289–2320.
[2][refercite:Bok-Meg-Zid-2009]
O. Bokanowski, N. Megdich, H. Zidani.
Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous data, in: Numerische Mathematik / Numerical Mathematics, 2010, vol. 115, no 1, pp. 1–44.
http://hal.inria.fr/inria-00193157
[3][refercite:ref-BGLSa]
J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, C. Sagastizábal.
Numerical Optimization: theoretical and numerical aspects, Universitext, Springer-Verlag, Berlin, 2006, second edition.
[4][refercite:BonMarZid07]
J. F. Bonnans, S. Maroso, H. Zidani.
Error estimates for a stochastic impulse control problem, in: Appl. Math. and Optim., 2007, vol. 55, no 3, pp. 327–357.
[5][refercite:ref-PAOP]
J. F. Bonnans, A. Shapiro.
Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000.
[6][refercite:ref-BonZid03]
J. F. Bonnans, H. Zidani.
Consistency of generalized finite difference schemes for the stochastic HJB equation, in: SIAM J. Numerical Analysis, 2003, vol. 41, pp. 1008-1021.
[7][refercite:ref-BBLVHT05]
N. Bérend, J. F. Bonnans, J. Laurent-Varin, M. Haddou, C. Talbot.
An Interior-Point Approach to Trajectory Optimization, in: J. Guidance, Control and Dynamics, 2007, vol. 30, no 5, pp. 1228-1238.
[8][refercite:ref-GeMa07]
J. Gergaud, P. Martinon.
Using switching detection and variational equations for the shooting method, in: Optimal Control Applications and Methods, 2007, vol. 28, no 2, pp. 95–116.
[9][refercite:MBLVT09]
P. Martinon, J. F. Bonnans, J. Laurent-Varin, E. Trélat.
Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher, in: J. Guidance, Control, and Dynamics, 2009, vol. 32, no 1, pp. 51-55.
Publications of the year

Articles in International Peer-Reviewed Journals

[10][cite:altarovici:hal-00653337]
A. Altarovici, O. Bokanowski, H. Zidani.
A general Hamilton-Jacobi framework for nonlinear state-constrained control problems, in: ESAIM: Control, Optimisation and Calculus of Variations, 2012.
http://hal.inria.fr/hal-00653337
[11][cite:aronna:inria-00605128]
M. S. Aronna, J. F. Bonnans, A. V. Dmitruk, P. Lotito.
Quadratic conditions for bang-singular extremals, in: Numerical Algebra, Control and Optimization, AIMS Journal, September 2012, vol. 2, no 3, pp. 511-546. [ DOI : 10.3934/naco.2012.2.511 ]
http://hal.inria.fr/inria-00605128
[12][cite:AroBonMar11]
M. S. Aronna, J. F. Bonnans, P. Martinon.
A Shooting Algorithm for Optimal Control Problems with Singular Arcs, in: Journal of Optimization Theory and Applications, 2013, Inria Report RR-7763, 2011.
http://hal.inria.fr/inria-00631332
[13][cite:BayBonSil11]
T. Bayen, J. Bonnans, F. Silva.
Strong second order optimality conditions for semilinear elliptic equations optimal control problems, in: Transactions A.M.S., 2013, Inria Report RR-7765, 2011.
[14][cite:bokanowski:hal-00741178]
O. Bokanowski, J. Garcke, M. Griebel, I. Klompmaker.
An adaptive sparse grid semi-lagrangian scheme for first order Hamilton-Jacobi Bellman equations, in: Journal Scientific Computing, September 2012. [ DOI : 10.1007/s10915-012-9648-x ]
http://hal.inria.fr/hal-00741178
[15][cite:BCC2012]
J. Bonnans, Z. Cen, T. Christel.
Energy contracts management by stochastic programming techniques, in: Annals of Operations Research, 2012, vol. 200, no 1, pp. 199-222.
http://dx.doi.org/10.1007/s10479-011-0973-5
[16][cite:MR2918246]
J. F. Bonnans, N. P. Osmolovskii.
Characterization of a local quadratic growth of the Hamiltonian for control constrained optimal control problems, in: Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 2012, vol. 19, no 1-2, pp. 1–16, special issue dedicated to the memory of Professor Arie Leizarowitz.
[17][cite:bonnans:inria-00537229]
J. F. Bonnans, F. J. Silva.
Error estimates for the logarithmic barrier method in linear quadratic stochastic optimal control problems, in: Systems Control Lett., 2012, vol. 61, no 1, pp. 143–147.
http://dx.doi.org/10.1016/j.sysconle.2011.10.003
[18][cite:briani:inria-00627520]
A. Briani, F. Camilli, H. Zidani.
Approximation Schemes for Monotone Systems of Nonlinear Second Order Partial Differential Equations: Convergence Result and Error Estimate, in: Differential Equations and Applications, 2012, vol. 4, pp. 297-317. [ DOI : 10.7153/dea-04-18 ]
http://hal.inria.fr/inria-00627520
[19][cite:imbert:hal-00569010]
C. Imbert, R. Monneau, H. Zidani.
A Hamilton-Jacobi approach to junction problems and application to traffic flows, in: ESAIM: COCV, 2012, This paper is dedicated to J.-B. Hiriart-Urruty.. [ DOI : 10.1051/cocv/2012002 ]
http://hal.archives-ouvertes.fr/hal-00569010
[20][cite:MR2968265]
F. Álvarez, J. Bolte, J. F. Bonnans, F. J. Silva.
Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems, in: Math. Program., 2012, vol. 135, no 1-2, Ser. A, pp. 473–507.
http://dx.doi.org/10.1007/s10107-011-0477-8

International Conferences with Proceedings

[21][cite:bokanowski:hal-00724842]
O. Bokanowski, E. Cristiani, J. Laurent-Varin, H. Zidani.
Hamilton-Jacobi-Bellman approach for the climbing problem for heavy launchers, in: 20th International Symposium on Mathematical Theory of Networks and Systems, Melbourne, Australia, 2012.
http://hal.inria.fr/hal-00724842
[22][cite:granato:hal-00735660]
G. Granato.
Reachability of Delayed Hybrid Systems Using Level-set Methods, in: 3rd International Conference on Engineering Optimization, Rio de Janeiro, Brazil, July 2012.
http://hal.inria.fr/hal-00735660

Scientific Books (or Scientific Book chapters)

[23][cite:BonCenChrPMS12]
J. Bonnans, Z. Cen, T. Christel.
, Sensitivity analysis of energy contracts by stochastic programming techniquesR. Carmona, P. D. Moral, P. Hu, N. Oudjane (editors), Proceedings in Mathematics series, Springer, 2012, vol. 12, pp. 447-471.
http://dx.doi.org/10.1007/978-3-642-25746-9_15

Internal Reports

[24][cite:barty:hal-00671186]
K. Barty, J. F. Bonnans, L. Pfeiffer.
Sensitivity analysis for the outages of nuclear power plants, Inria, February 2012, no RR-7884.
http://hal.inria.fr/hal-00671186
[25][cite:bonnans:hal-00740698]
J. F. Bonnans.
Optimal control of a semilinear parabolic equation with singular arcs, Inria, October 2012, no RR-8099, 15 p.
http://hal.inria.fr/hal-00740698
[26][cite:bonnans:hal-00697504]
J. F. Bonnans, C. De La Vega, X. Dupuis.
First and second order optimality conditions for optimal control problems of state constrained integral equations, Inria, May 2012, no RR-7961, 33 p.
http://hal.inria.fr/hal-00697504
[27][cite:bonnans:hal-00702246]
J. F. Bonnans, L. Pfeiffer, O. S. Serea.
Sensitivity analysis for relaxed optimal control problems with final-state constraints, Inria, May 2012, no RR-7977.
http://hal.inria.fr/hal-00702246
[28][cite:bonnans:hal-00726992]
F. Bonnans, P. Martinon, V. Grélard.
Bocop - A collection of examples, Inria, August 2012, no RR-8053.
http://hal.inria.fr/hal-00726992
[29][cite:cen:hal-00663267]
Z. Cen.
Solving multi-stage stochastic mixed integer linear programs by the dual dynamic programming approach, Inria, January 2012, no RR-7868.
http://hal.inria.fr/hal-00663267
[30][cite:martinon:hal-00754971]
P. Martinon, T. Bayen, F. Mairet.
Optimizing the anaerobic digestion of microalgae in a coupled process, Inria, November 2012, 6 p.
http://hal.inria.fr/hal-00754971
[31][cite:pfeiffer:hal-00753578]
L. Pfeiffer, R. Apparigliato, S. Auchapt.
Two methods of pruning Benders' cuts and their application to the management of a gas portfolio, Inria, November 2012, no RR-8133, 23 p.
http://hal.inria.fr/hal-00753578

Other Publications

[32][cite:alhaj:hal-00721233]
M. Al Haj, N. Forcadel, R. Monneau.
Existence and uniqueness of traveling waves for fully overdamped Frenkel-Kontorova models.
http://hal.inria.fr/hal-00721233
[33][cite:bokanowski:hal-00653532]
O. Bokanowski, Y. Cheng, C.-W. Shu.
A discontinuous Galerkin scheme for front propagation with obstacles.
http://hal.inria.fr/hal-00653532
[34][cite:bokanowski:hal-00743042]
O. Bokanowski, G. Simarmata.
Semi-Lagrangian discontinuous Galerkin schemes for some first and second order partial differential equations, October 2012.
http://hal.archives-ouvertes.fr/hal-00743042
[35][cite:forcadel:hal-00653671]
N. Forcadel, Z. Rao, H. Zidani.
State-constrained optimal control problems of impulsive differential equations.
http://hal.inria.fr/hal-00653671
[36][cite:granato:hal-00735724]
G. Granato, H. Zidani.
Level-set approach for Reachability Analysis of Hybrid Systems under Lag Constraints.
http://hal.inria.fr/hal-00735724
References in notes
[37][footcite:Abgrall03]
R. Abgrall.
Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations, in: SIAM J. Numerical Analysis, 2003, vol. 41, no 6, pp. 2233–2261.
[38][footcite:Abgrall00]
R. Abgrall, S. Augoula.
High order numerical discretization for Hamilton-Jacobi equations on triangular meshes, in: J. Scientific Computing, 2000, vol. 15, no 2, pp. 197–229.
[39][footcite:AroBonMar11]
M. S. Aronna, J. F. Bonnans, P. Martinon.
A Shooting Algorithm for Optimal Control Problems with Singular Arcs, in: Journal of Optimization Theory and Applications, 2013, Inria Report RR-7763, 2011.
[40][footcite:Aub90]
J. Aubin, H. Frankowska.
Set-valued analysis, Birkhäuser, Boston, 1990.
[41][footcite:BarCap97]
M. Bardi, I. Capuzzo-Dolcetta.
Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1997.
[42][footcite:Bar94a]
G. Barles.
Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques et Applications, Springer, Paris, 1994, vol. 17.
[43][footcite:BarJak03]
G. Barles, E. Jakobsen.
Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations, in: SIAM J. Numerical Analysis, 2005, vol. 43, no 2, pp. 540–558 (electronic).
[44][footcite:Bli46]
G. Bliss.
Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Illinois, 1946.
[45][footcite:BonHerSIAM07]
J. F. Bonnans, A. Hermant.
Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems with a Single Constraint and Control, in: SIAM J. Control Optimization, 2007, vol. 46, no 4, pp. 1398–1430.
[46][footcite:BonHerIHP09]
J. F. Bonnans, A. Hermant.
Second-order Analysis for Optimal Control Problems with Pure State Constraints and Mixed Control-State Constraints, in: Annales de l'Institut Henri Poincaré. Analyse non linéaire., 2009, vol. 26, no 2, pp. 561-598.
[47][footcite:BonLauV04]
J. F. Bonnans, J. Laurent-Varin.
Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control, in: Numerische Mathematik, 2006, vol. 103, no 1, pp. 1–10.
[48][footcite:BoOtZi04]
J. F. Bonnans, E. Ottenwaelter, H. Zidani.
Numerical schemes for the two dimensional second-order HJB equation, in: ESAIM: M2AN, 2004, vol. 38, pp. 723-735.
[49][footcite:BonZid03]
J. F. Bonnans, H. Zidani.
Consistency of generalized finite difference schemes for the stochastic HJB equation, in: SIAM J. Numerical Analysis, 2003, vol. 41, pp. 1008-1021.
[50][footcite:BryHo75]
A. E. Bryson, Y.-C. Ho.
Applied optimal control, Hemisphere Publishing, New-York, 1975.
[51][footcite:Cla76]
F. Clarke.
A new approach to Lagrange multipliers, in: Mathematics of Operations Research, 1976, vol. 2, pp. 165-174.
[52][footcite:CEL84]
M. Crandall, L. Evans, P. Lions.
Some properties of viscosity solutions of Hamilton-Jacobi equations, in: Trans. Amer. Math. Soc, 1984, vol. 282, pp. 487-502.
[53][footcite:CraLio83]
M. Crandall, P. Lions.
Viscosity solutions of Hamilton Jacobi equations, in: Bull. American Mathematical Society, 1983, vol. 277, pp. 1–42.
[54][footcite:CraLio84]
M. Crandall, P. Lions.
Two approximations of solutions of Hamilton-Jacobi equations, in: Mathematics of Computation, 1984, vol. 43, pp. 1–19.
[55][footcite:DeL01]
B. Després, F. Lagoutière.
Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, in: J. Sci. Comput., 2001, vol. 16, pp. 479-524.
[56][footcite:DeL99]
B. Després, F. Lagoutière.
A non-linear anti-diffusive scheme for the linear advection equation, in: C. R. Acad. Sci. Paris, Série I, Analyse numérique, 1999, vol. 328, pp. 939-944.
[57][footcite:DonHagVel00]
A. Dontchev, W. Hager, V. Veliov.
Second-order Runge-Kutta approximations in control constrained optimal control, in: SIAM Journal on Numerical Analysis, 2000, vol. 38, pp. 202–226 (electronic).
[58][footcite:Eke79]
I. Ekeland.
Nonconvex minimization problems, in: Bulletin of the American Mathematical Society, 1979, vol. 1(New series), pp. 443-474.
[59][footcite:FalFer02]
M. Falcone, R. Ferretti.
Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods, in: Journal of Computational Physics, 2002, vol. 175, pp. 559–575.
[60][footcite:FalFer98]
M. Falcone, R. Ferretti.
Convergence analysis for a class of high-order semi-Lagrangian advection schemes, in: SIAM J. Numer. Anal., 1998, vol. 35, no 3, pp. 909–940 (electronic).
[61][footcite:GeMa07]
J. Gergaud, P. Martinon.
Using switching detection and variational equations for the shooting method, in: Optimal Control Applications and Methods, 2007, vol. 28, no 2, pp. 95–116.
[62][footcite:Hager00]
W. Hager.
Runge-Kutta methods in optimal control and the transformed adjoint system, in: Numerische Mathematik, 2000, vol. 87, no 2, pp. 247–282.
[63][footcite:Harten89]
E. Harten.
ENO schemes with subcell resolution, in: J. Computational Physics, 1989, vol. 83, pp. 148–184.
[64][footcite:HuShu99]
C. Hu, C.-W. Shu.
A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, in: SIAM J. on Scientific Computing, 1999, vol. 21, no 2, pp. 666–690 (electronic).
[65][footcite:HuShu99cc]
C. Hu, C.-W. Shu.
A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, in: SIAM J. on Scientific Computing, 1999, vol. 21, no 2, pp. 666–690 (electronic).
[66][footcite:Iof79]
A. Ioffe, V. Tihomirov.
Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam, 1979, Russian Edition: Nauka, Moscow, 1974.
[67][footcite:Kry00]
N. Krylov.
On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients, in: Probability Theory and Related Fields, 2000, vol. 117, pp. 1–16.
[68][footcite:KusDup92]
H. Kushner, P. Dupuis.
Numerical methods for stochastic control problems in continuous time, Applications of mathematics, Springer, New York, 2001, vol. 24, Second edition.
[69][footcite:Lag1788]
J.-L. Lagrange.
Mécanique analytique, Paris, 1788, reprinted by J. Gabay, 1989.
[70][footcite:LeeMar67]
E. Lee, L. Markus.
Foundations of optimal control theory, John Wiley, New York, 1967.
[71][footcite:Lei66]
G. Leitmann.
An introduction to optimal control, Mc Graw Hill, New York, 1966.
[72][footcite:MBM98]
K. Malanowski, C. Büskens, H. Maurer.
Convergence of approximations to nonlinear optimal control problems, in: Mathematical programming with data perturbations, New York, Lecture Notes in Pure and Appl. Math., Dekker, 1998, vol. 195, pp. 253–284.
[73][footcite:OS91]
S. Osher, C.-W. Shu.
High essentially nonoscillatory schemes for Hamilton-Jacobi equations, in: SIAM J. Numer. Anal., 1991, vol. 28, no 4, pp. 907-922.
[74][footcite:Pham-book]
H. Pham.
Optimisation et Contrôle Stochastique Appliqués à la Finance, Springer Verlag, 2007, no 61.
[75][footcite:PBGM]
L. Pontryagin, V. Boltyanski, R. Gamkrelidze, E. Michtchenko.
The Mathematical Theory of Optimal Processes, Wiley Interscience, New York, 1962.
[76][footcite:Roe85]
P. Roe.
Some contributions to the modelling of discontinuous flows, in: Lectures in Applied Mathematics, 1985, vol. 22, pp. 163–193.
[77][footcite:You69]
L. Young.
Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia, 1969.
[78][footcite:Oks03]
B. Øksendal.
Stochastic differential equations, Universitext, Sixth, Springer-Verlag, Berlin, 2003.