Project Team Magique-3d

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
PDF e-pub XML


Bibliography

Major publications by the team in recent years
[1]
M. Amara, R. Djellouli, C. Farhat.
Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems, in: SIAM Journal on Numerical Analysis, 2009, vol. 47, p. 1038–1066.
[2]
H. Barucq, J. Diaz, M. Tlemcani.
New absorbing layers conditions for short water waves, in: Journal of Computational Physics, 2010, vol. 229, p. 58–72. [ DOI : 10.1016/j.jcp.2009.08.033 ]
http://hal.inria.fr/inria-00418317/en
[3]
H. Barucq, R. Djellouli, C. Bekkey.
A multi-step procedure for enriching limited two-dimensional acoustic far-field pattern measurements, in: Journal of Inverse and Ill-Posed Problems, 2010, vol. 18, p. 189-216.
http://hal.inria.fr/inria-00527273/en
[4]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
Performance assessment of a new class of local absorbing boundary conditions for elliptical- and prolate spheroidal-shaped boundaries, in: Applied Numerical Mathematics, 2008.
http://hal.inria.fr/inria-00338494/en/
[5]
J. Diaz, M. J. Grote.
Energy Conserving Explicit Local Time-Stepping for Second-Order Wave Equations, in: SIAM Journal on Scientific Computing, 2009, vol. 31, no 3, p. 1985-2014.
http://hal.inria.fr/inria-00409233/en/
[6]
D. Komatitsch, G. Erlebacher, D. Göddeke, D. Michéa.
High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster, in: Journal of Computational Physics, 2010, vol. 229, no 20, p. 7692-7714. [ DOI : 10.1016/j.jcp.2010.06.024 ]
http://hal.inria.fr/inria-00528481/en
[7]
T.-M. Laleg-Kirati, C. Médigue, Y. Papelier, F. Cottin, A. Van De Louw.
Validation of a semi-classical Signal analysis method for Stroke volume variation assessment: a comparison with the PiCCO technique, in: Annals of biomedical engineering., 2010. [ DOI : 10.1007/s10439-010-0118-z ]
http://hal.inria.fr/inria-00527442/en
[8]
R. Madec, D. Komatitsch, J. Diaz.
Energy-conserving local time stepping based on high-order finite elements for seismic wave propagation across a fluid-solid interface, in: Computer Modeling in Engineering and Sciences, 2009, vol. 49, no 2, p. 163-189.
http://hal.inria.fr/inria-00436429/en/
[9]
R. Martin, D. Komatitsch, A. Ezziani.
An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation in poroelastic media, in: Geophysics, 2008, vol. 73, no 5, p. T51-T61.
http://dx.doi.org/10.1190/1.2939484
[10]
R. Martin, D. Komatitsch.
An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation, in: Geophysical Journal International, 2009, vol. 179, no 1, p. 333-344.
http://hal.inria.fr/inria-00528453
Publications of the year

Doctoral Dissertations and Habilitation Theses

[11]
C. Agut.
Schémas numériques d'ordre élevé en espace et en temps pour l'équation des ondes, Université de Pau et des Pays de l'Adour, December 2011.
[12]
V. Duprat.
Conditions aux limites absorbantes enrichies pour l'équation des ondes acoustiques et l'équation d'Helmholtz, Université de Pau et des Pays de l'Adour, December 2011.

Articles in International Peer-Reviewed Journal

[13]
C. Agut, J. Diaz, A. Ezziani.
High-Order Schemes Combining the Modified Equation Approach and Discontinuous Galerkin Approximations for the Wave Equation, in: Communications in Computational Physics, February 2012, vol. 11, no 2, p. 691-708. [ DOI : 10.4208/cicp.311209.051110s ]
http://hal.inria.fr/hal-00646421/en
[14]
C. Baldassari, H. Barucq, H. Calandra, B. Denel, J. Diaz.
Performance Analysis of a High-Order Discontinuous GalerkinMethod. Application to the Reverse Time Migration, in: Communications in Computational Physics, January 2012, vol. 11, no 2, p. 660-673. [ DOI : 10.4208/cicp.291209.171210s ]
http://hal.inria.fr/hal-00643334/en
[15]
C. Baldassari, H. Barucq, H. Calandra, J. Diaz.
Numerical performances of a hybrid local-time stepping strategy applied to the reverse time migration, in: Geophysical Prospecting, September 2011, vol. 59, no 5, p. 907-919. [ DOI : 10.1111/j.1365-2478.2011.00975.x ]
http://hal.inria.fr/hal-00627603/en
[16]
H. Barucq, C. Bekkey, R. Djellouli.
"Full aperture reconstruction of the acoustic Far-Field Pattern from few measurements", in: Communication in Computational Physics, 2012, vol. 11, p. 647-659. [ DOI : 10.4208/cicp.281209.150610s ]
http://hal.inria.fr/inria-00527346/en
[17]
H. Barucq, J. Diaz, V. Duprat.
Micro-differential boundary conditions modelling the absorption of acoustic waves by 2D arbitrarily-shaped convex surfaces, in: Communications in Computational Physics, February 2012. [ DOI : 10.4208/cicp.311209.051110s ]
http://hal.inria.fr/hal-00646421/en
[18]
H. Barucq, J. Diaz, V. Duprat.
Micro-differential boundary conditions modelling the absorption of acoustic waves by 2D arbitrarily-shaped convex surfaces, in: Communications in Computational Physics, 2012, vol. 11, no 2, p. 674-690. [ DOI : 10.4208/cicp.311209.051110s ]
http://hal.inria.fr/hal-00649837/en
[19]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
Exponential Decay of High-Order Spurious Prolate Spheroidal Modes Induced by a Local Approximate DtN Exterior Boundary Condition, in: Progress In Electromagnetics Research B, 2012, vol. 37, p. 1-19.
http://hal.inria.fr/hal-00646972/en
[20]
A. Bendali, A. Makhlouf, S. Tordeux.
Field behavior near the edge of a microstrip antenna by the method of matched asymptotic expansions, in: Quarterly of Applied Mathematics, June 2011, vol. 69, p. 691-721.
http://hal.inria.fr/inria-00531578/en
[21]
G. Caloz, M. Dauge, E. Faou, V. Péron.
On the influence of the geometry on skin effect in electromagnetism, in: Computer Methods in Applied Mechanics and Engineering, 2011, vol. 200, no 9-12, p. 1053-1068. [ DOI : 10.1016/j.cma.2010.11.011 ]
http://hal.inria.fr/hal-00503170/en
[22]
M. Durufle, V. Péron, C. Poignard.
Time-harmonic Maxwell equations in biological cells - The differential form formalism to treat the thin layer, in: Confluentes Mathematici, 2011. [ DOI : 10.1142/S1793744211000345 ]
http://hal.inria.fr/inria-00605055/en
[23]
M. Durufle, V. Péron, C. Poignard.
Time-harmonic Maxwell equations in biological cells. The differential form formalism to treat the thin layer, in: Confluentes Mathematici, 2011, vol. 3, no 2, p. 325-357. [ DOI : 10.1142/S1793744211000345 ]
http://hal.inria.fr/hal-00651510/en
[24]
M. Fares, A. Tizaoui, S. Tordeux.
Matched Asymptotic Expansions of the Eigenvalues of a 3-D boundary-value problem relative to two cavities linked by a hole of small size, in: Communications in Computational Physics, 2012, vol. 11, no 2, p. 456-471.
http://hal.inria.fr/hal-00644699/en
[25]
N. Favretto-Cristini, D. Komatitsch, J. Carcione, F. Cavallini.
Elastic surface waves in crystals: Part I : Review of the physics, in: Ultrasonics, 2011, vol. 51, no 6, p. 653-660. [ DOI : 10.1016/j.ultras.2011.02.007 ]
http://hal.inria.fr/hal-00652130/en/
[26]
H. N. Gharti, D. Komatitsch, V. Oye, R. Martin, J. Tromp.
Application of an elastoplastic spectral-element method to 3D slope stability analysis, in: Int. J. Numer. Meth. Engng, 2012.
http://hal.inria.fr/hal-00617253/en
[27]
D. Komatitsch, J. Carcione, F. Cavallini, N. Favretto-Cristini.
Elastic surface waves in crystals: Part II : Cross-check of two full-wave numerical modeling methods, in: Ultrasonics, 2011, vol. 51, no 8, p. 878-889. [ DOI : 10.1016/j.ultras.2011.05.001 ]
http://hal.inria.fr/hal-00652131/en/
[28]
D. Komatitsch.
Fluid-solid coupling on a cluster of GPU graphics cards for seismic wave propagation, in: Comptes Rendus de l'Académie des Sciences - Mécanique, 2011, vol. 339, p. 125-135. [ DOI : 10.1016/j.crme.2010.11.007 ]
http://hal.inria.fr/hal-00652132/en/
[29]
M.-G. Orozco-del-Castillo, C. Ortiz-Aleman, R. Martin, R. Avila-Carrera, A. Rodriguez-Castellanos.
Seismic data interpretation using the Hough transform and principal component analysis, in: Journal of Geophysics and Engineering, 2011, vol. 8, no 61, p. 61-73. [ DOI : 10.1088/1742-2132/8/1/008 ]
http://hal.inria.fr/inria-00545012/en
[30]
D. Peter, D. Komatitsch, Y. Luo, R. Martin, N. Le Goff, E. Casarotti, P. Le Loher, F. Magnoni, Q. Liu, C. Blitz, T. Nissen-Meyer, P. Basini, J. Tromp.
Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes, in: Geophysical Journal International, 2011, vol. 186, p. 721-739. [ DOI : 10.1111/j.1365-246X.2011.05044.x ]
http://hal.inria.fr/hal-00617249/en
[31]
A. Rodriguez-Castellanos, E. Flores, F. Sánchez-Sesma, C. Ortiz-Aleman, M. Nava-Flores, R. Martin.
Indirect Boundary Element Method applied to Fluid-Solid Interfaces, in: Soil Dynamics and Earthquake Engineering, 2011, vol. 31, no 3, p. 470-477.
http://hal.inria.fr/inria-00544999/en
[32]
K. Schmidt, S. Tordeux.
High order transmission conditions for thin conductive sheets in magneto-quasistatics, in: ESAIM: Mathematical Modelling and Numerical Analysis, November 2011, vol. 45, no 6, p. 1115-1140. [ DOI : 10.1051/m2an/2011009 ]
http://hal.inria.fr/inria-00473213/en

Internal Reports

[33]
C. Agut, J.-M. Bart, J. Diaz.
Numerical study of the stability of the Interior Penalty Discontinuous Galerkin method for the wave equation with 2D triangulations, INRIA, August 2011, no RR-7719.
http://hal.inria.fr/inria-00617817/en
[34]
H. Barucq, J. Diaz, V. Duprat.
A new family of second-order absorbing boundary conditions for the acoustic wave equation - Part I: Construction and mathematical analysis, INRIA, February 2011, no RR-7553.
http://hal.inria.fr/inria-00570301/en
[35]
H. Barucq, J. Diaz, V. Duprat.
A new family of second-order absorbing boundary conditions for the acoustic wave equation - Part II : Mathematical and numerical studies of a simplified formulation, INRIA, March 2011, no RR-7575.
http://hal.inria.fr/inria-00578152/en

Other Publications

[36]
F. Buret, M. Dauge, P. Dular, L. Krähenbühl, V. Péron, R. Perrussel, C. Poignard, D. Voyer.
Eddy currents and corner singularities, 2011, To appear in IEEE Trans on Mag..
http://hal.inria.fr/inria-00614033/en
References in notes
[37]
C. Agut, J. Diaz.
New high order schemes based on the modified equation technique for solving the wave equation, INRIA, July 2010, no RR-7331.
http://hal.inria.fr/inria-00497627/en
[38]
M. Ainsworth, P. Monk, W. Muniz.
Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation, in: Journal of Scientific Computing, 2006, vol. 27.
[39]
X. Antoine, H. Barucq.
Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering, in: Math. Model. Numer. Anal., 2005, vol. 39, no 5, p. 1041-1059.
[40]
X. Antoine, H. Barucq, L. Vernhet.
High-frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions, in: Asymptotic Analysis, 2001, vol. 3, no 4, p. 257-284.
[41]
T. Arbogast, S. Minkoff, P. Keenan..
An operator-based approach to upscaling the pressure equation, in: Computational methods in water resources, 1998, vol. XII, p. 405–412.
[42]
D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini.
Unified analysis of discontinuous Galerkin methods for elliptic problems, in: SIAM J. Numer. Anal., 2002, vol. 39, p. 1749–1779.
[43]
C. Baldassari.
Modélisation et simulation numérique pour la migration terrestre par équation d'ondes, Université de Pau et des Pays de l'Adour, 2009.
[44]
H. Barucq, C. Bekkey, R. Djellouli.
A Multi-Step Procedure for Enriching Limited Two-Dimensional Acoustic Far-Field Pattern Measurements., INRIA, 2009, RR-7048.
http://hal.inria.fr/inria-00420644/en/
[45]
H. Barucq, J. Diaz, M. Tlemcani.
New absorbing layers conditions for short water waves, in: Journal of Computational Physics, 2010, vol. 229, p. 58–72. [ DOI : 10.1016/j.jcp.2009.08.033 ]
http://hal.inria.fr/inria-00418317/en
[46]
H. Barucq, R. Djellouli, C. Bekkey.
A multi-step procedure for enriching limited two-dimensional acoustic far-field pattern measurements, in: Journal of Inverse and Ill-Posed Problems, 2010, vol. 18, p. 189-216.
http://hal.inria.fr/inria-00527273/en
[47]
E. Baysal, D. D. Kosloff, J. W. C. Sherwood.
Reverse-time migration, in: Geophysics, 1983, vol. 48, p. 1514-1524.
[48]
L. Borcea.
Electrical impedance tomography, in: Inverse Probl., 2002, vol. 18, p. R99-R136.
[49]
M. Brühl, M. Hanke.
Numerical implementation of two noniterative methods for locating inclusions by impedance tomography, in: Inverse Probl., 2000, vol. 16, p. 1029-1042.
[50]
L. Carington, D. Komatitsch, M. Laurenzano, M. Tikir, D. Michéa, N. Le Goff, A. Snavely, J. Tromp.
High-frequency simulations of global seismic wave propagation using SPECFEM3D_GLOBE on 62 thousand processor cores, in: Proceedings of the ACM/IEEE Supercomputing SC'2008 conference, 2008, p. 1-11, Article #60, Gordon Bell Prize finalist article.
[51]
S. Chevrot, L. Zhao.
Multiscale finite-frequency Rayleigh wave tomography of the Kaapvaal craton, in: Geophys. J. Int, 2007, vol. 169, p. 201–215.
[52]
D. Colton, R. Kress.
Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, Springer Verlag, 1992, no 93.
[53]
M. A. Dablain.
The application of high-order differencing to the scalar wave equation, in: Geophysics, 1986, vol. 51, no 1, p. 54-66.
[54]
S. Delcourte, N. Glinsky-Olivier, L. Fezoui.
A high-order Discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc, 2009, vol. 27, p. 70–89.
[55]
R. Djellouli, C. Farhat, R. Tezaur.
On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method, in: Inverse Problems, 2002, vol. 18, p. 1229–1246.
[56]
C. Farhat, I. Harari, U. Hetmaniuk.
A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, in: Comput. Methods Appl. Mech. Engrg., 2003, vol. 192, p. 1389-1419.
[57]
C. Farhat, I. Harari, U. Hetmaniuk.
The discontinuous enrichment method for multiscale analysis, in: Comput. Methods Appl. Mech. Engrg., 2003, vol. 192, p. 3195-3209.
[58]
J. C. Gilbert, P. Joly.
Higher order time stepping for second order hyperbolic problems and optimal CFL conditions, in: SIAM Numerical Analysis, 2006.
[59]
M. Grote, T. Mitkova.
High-order explicit local time-stepping methods for damped wave equations, preprint on arxiv.
http://arxiv.org/abs/1109.4480
[60]
M. J. Grote, D. Schötzau.
Optimal error estimates for the fully discrete interior penalty DG method for the wave equation, in: J. Sci. Comput., 2009, vol. 40, p. 257–272.
[61]
M. J. Grote, A. Schneebeli, D. Schötzau.
Discontinuous galerkin finite element method for the wave equation, in: SIAM J. on Numerical Analysis, 2006, vol. 44, p. 2408–2431.
[62]
0. Korostyshevskaya, S. Minkoff.
A matrix analysis of operator-based upscaling for the wave equation, in: SIAM J. Number. Anal., 2006, vol. 44, p. 586–612.
[63]
R. Kress.
Integral equation methods in inverse acoustic and electromagnetic scattering, in: Boundary Integral Formulation for Inverse Analysis, Inghman, Wrobel (editors), Computational Mechanics Publications, Southampton, 1997, p. 67–92.
[64]
R. Kress, W. Rundell.
Inverse obstacle scattering using reduced data, in: SIAM J. Appl. Math., 1999, vol. 59, p. 442–454.
[65]
C. Luke, P. Martin.
Fluid-Solid Interaction: Acoustic Scattering by a Smooth Elastic Obstacle, in: SIAM J. Appl. Math, 1995, vol. 55, p. 904–922.
[66]
R. Martin, C. Couder-Castaneda.
An improved unsplit and convolutional Perfectly Matched Layer (CPML) absorbing technique for the Navier-Stokes equations using cut-off frequency shift, in: Computer Modelling in Engineering and Sciences, 2010, vol. 63, no 1, p. 47-78.
http://hal.inria.fr/inria-00528457/en
[67]
C. Morency, J. Tromp.
Spectral-element simulations of wave propagation in poroelastic media, in: Geophys. J. Int., 2008, vol. 175, p. 301–345.
[68]
R. Ochs.
The limited aperture problem of inverse acoustic scattering: Dirichlet boundary conditions, in: SIAM J. Appl. Math., 1987, vol. 47, p. 1320–1341.
[69]
J. R. Poirier, A. Bendali, P. Borderies.
Impedance boundary conditions for the scattering of time-harmonic waves by rapidly varying surfaces, in: IEEE transactions on antennas and propagation, 2006, vol. 54.
[70]
A. Porubova, G. Mauginb.
Improved description of longitudinal strain solitary waves, in: Journal of Sound and Vibration, 2008, vol. 310, no 3.
[71]
G. R. Shubin, J. B. Bell.
A modified equation approach to constructing fourth-order methods for acoustic wave propagation, in: SIAM J. Sci. Statist. Comput., 1987, vol. 8, p. 135–151.
[72]
T. Vdovina, S. Minkoff, S. Griffith.
A two-scale solution algorithm for the elastic wave equation, in: SIAM J. Sci. Comput., 2009, vol. 31, p. 3356–3386.
[73]
T. Vdovina, S. Minkoff.
An a priori error analaysis of operator upscaling for the wave equation, in: International journal of numerical analysis and modeling, 2008, vol. 5, p. 543–569.
[74]
A. Zinn.
On an optimization method for full-and limited aperture problem in inverse acoustic scattering for sound-soft obstacle, in: Inverse Problem, 1989, vol. 5, p. 239–253.