Project Team Ipso

Members
Overall Objectives
Scientific Foundations
Application Domains
New Results
Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
PDF e-pub XML


Bibliography

Major publications by the team in recent years
[1]
G. Andreoiu, E. Faou.
Complete asymptotics for shallow shells, in: Asymptotic analysis, 2001, vol. 25, p. 239-270.
[2]
A. Aubry, P. Chartier.
On improving the convergence of Radau IIA methods when applied to index-2 DAEs, in: SIAM Journal on Numerical Analysis, 1998, vol. 35, no 4, p. 1347-1367.
[3]
A. Aubry, P. Chartier.
Pseudo-symplectic Runge-Kutta methods, in: BIT, 1998, vol. 38, p. 439–461.
[4]
F. Castella.
From the von Neumann equation to the Quantum Boltzmann equation in a deterministic framework, in: J. Stat. Phys., 2001, vol. 104–1/2, p. 387–447.
[5]
F. Castella.
Propagation of space moments in the Vlasov-Poisson Equation and further results, in: Ann. I.H.P., Anal. NonLin., 1999, vol. 16–4, p. 503–533.
[6]
R. Chan, P. Chartier, A. Murua.
Post-projected Runge-Kutta methods for index-2 differential-algebraic equations, in: Applied Numerical Mathematics, 2002, vol. 42, no 1-3, p. 77-94.
[7]
M. Dauge, I. Djurdjevic, E. Faou, A. Roessle.
Eigenmode asymptotics in thin elastic plates, in: J. Math. Pures Appl., 1999, vol. 78, p. 925-954.
[8]
E. Faou.
Elasticity on a thin shell: Formal series solution, in: Asymptotic analysis, 2002, vol. 31, p. 317-361.
Publications of the year

Doctoral Dissertations and Habilitation Theses

[9]
N. Crouseilles.
Contributions à la simulation numérique des modèles de Vlasov en physique des plasmas, Université de Strasbourg, January 2011, HDR.
http://tel.archives-ouvertes.fr/tel-00529809/en/

Articles in International Peer-Reviewed Journal

[10]
N. B. Abdallah, Y. Cai, F. Castella, F. Méhats.
Second order averaging for the nonlinear Schrödinger equation with strong anisotropic potential, in: Kinet. Relat. Models, 2011, vol. 4, p. 831-856.
[11]
S. Albeverio, A. Debussche, L. Xu.
Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noises, in: Applied Mathematics and Optimization, 2011, to appear.
[12]
E. Anceaume, F. Castella, R. Ludinard, B. Sericola.
Markov chains competing for transitions : applications to large-scale distributed systems, in: Methodology and Computing in Applied Probability, 2011, To appear.
[13]
S. Blanes, F. Casas, P. Chartier, A. Murua.
Splitting methods with complex coefficients for some classes of evolution equations, in: Mathematics of Computation, 2011, To appear.
[14]
G. Caloz, M. Dauge, E. Faou, V. Péron.
On the influence of the geometry on skin effect in electromagnetism, in: Computer Methods in Applied Mechanics and Engineering, 2011, vol. 200, no 9-12, p. 1053-1068. [ DOI : 10.1016/j.cma.2010.11.011 ]
http://hal.inria.fr/hal-00503170/en
[15]
M. P. Calvo, P. Chartier, J. M. Sanz-Serna, A. Murua.
Numerical stroboscopic averaging for ODEs and DAEs, in: Applied Numerical Mathematics, 2011, vol. 61, p. 1077-1095.
[16]
R. Carles, E. Faou.
Energy cascades for NLS on the torus, in: Discr. Contin. Dyn. Syst., 2011, To appear.
http://hal.inria.fr/hal-00528792/en
[17]
N. Champagnat, C. Chipot, E. Faou.
Reconciling alternate methods for the determination of charge distributions: A probabilistic approach to high-dimensional least-squares approximations, in: J. Math. Chem., 2011, vol. 49, 296 p.
http://hal.inria.fr/inria-00345411/en
[18]
N. Crouseilles, M. Lemou.
An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, in: Kinetic Related Models, 2011, vol. 4, p. 441-477.
[19]
N. Crouseilles, M. Mehrenberger, F. Vecil.
Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson, in: ESAIM proceeding, 2011, vol. 32, p. 211-230.
http://dx.doi.org/10.1051/proc/2011022
[20]
N. Crouseilles, A. Ratnani, E. Sonnendrücker.
An isogeometric analysis approach for the study of the gyrokinetic quasi-neutrality equation, in: Journal of Computational Physics, 2011, vol. 231, no 2, p. 373-393.
[21]
A. Crudu, A. Debussche, A. Muller, O. Radulescu.
Convergence of stochastic gene networks to hybrid piecewise deterministic processes, in: Annals of Applied Proba., 2011, to appear.
[22]
A. Debussche.
Weak approximation of stochastic partial differential equations: the nonlinear case, in: Math. of Comp., 2011, vol. 80, p. 89-117.
[23]
A. Debussche, N. Glatt-Holz, R. Temam.
Local Martingale and Pathwise Solutions for an Abstract Fluids Model, in: Physica D, 2011, to appear.
[24]
A. Debussche, N. Glatt-Holz, R. Temam, M. Ziane.
Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, in: Nonlinearity, 2011, to appear.
[25]
A. Debussche, L. Goudenège.
Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections, in: SIAM Journal on Mathematical Analysis, 2011, vol. 43, 1473 p.
[26]
A. Debussche, M. Hogele, P. Imkeller.
Asymptotic first exit times of the Chafee-Infante equation with small heavy tailed noise, in: Elect. Comm. Prob., 2011, vol. 16, p. 213-225.
[27]
A. Debussche, Y. Hu, G. Tessitore.
Ergodic BSDEs under weak dissipative assumptions, in: Stoch. Proc; Appl., 2011, vol. 121, no 3, p. 407-426.
[28]
A. Debussche, Y. Tsustumi.
1D quintic nonlinear equation with white noise dispersion, in: Journal de Math. Pures et Appl., 2011, vol. 96, p. 363-376.
[29]
A. Debussche, J. Vovelle.
Diffusion limit for a stochastic kinetic problem, in: Communications on Pure and Applied Analysis, 2011, to appear.
[30]
E. Faou, B. Grébert.
Hamiltonian interpolation of splitting approximations for nonlinear PDEs, in: Found. Comput. Math., 2011, vol. 11, p. 381–415.
[31]
P. Gérard, F. Méhats.
The Schrödinger Poisson system on the sphere, in: SIAM J. Math. Anal., 2011, vol. 43, no 3, p. 1232-1268.
[32]
M. Lemou, F. Méhats.
A boundary matching micro-macro decomposition for kinetic equations, in: C. R. Acad. Sci. Paris, 2011, vol. 349, p. 479-484.
[33]
M. Lemou, F. Méhats, P. Raphaël.
Orbital stability of spherical galactic models, in: Inventiones Math., 2011, to appear, arXiv:1007.4095.
[34]
F. Méhats, O. Pinaud.
A problem of moment realizability in quantum statistical physics, in: Kinet. Relat. Models, 2011, vol. 4, p. 1143-1158.

Scientific Books (or Scientific Book chapters)

[35]
M. P. Calvo, P. Chartier, J. M. Sanz-Serna, A. Murua.
A stroboscopic numerical method for highly oscillatory problems, in: Numerical Analysis and Multiscale Computations, B. Engquist, O. Runborg, R. Tsai (editors), ASM Press, Washington DC, 2011, p. 73-87.
[36]
P. Chartier.
Symmetric methods, in: Encyclopedia of Applied and Computational Mathematics, B. Engquist (editor), Springer, 2012, To appear.
[37]
E. Faou.
Geometric numerical integration and Schrödinger equations, European Mathematical Society, 2011, To appear.

Books or Proceedings Editing

[38]
E. Cancès, N. Crouseilles, H. Guillard, B. Nkonga, E. Sonnendrücker (editors)
CEMRACS'10 research achievements: Numerical modeling of fusion, EDP Science, 2011.
http://www.esaim-proc.org/index.php?option=com_toc&url=/articles/proc/abs/2011/02/contents/contents.html

Internal Reports

[39]
G. Latu, V. Grandgirard, N. Crouseilles, R. Belaouar, E. Sonnendrücker.
Some parallel algorithms for the quasi-neutrality solver in GYSELA, INRIA, 2011, no 7591.
http://hal.inria.fr/IRMA/inria-00583521/en/
[40]
G. Latu, V. Grandgirard, N. Crouseilles, G. Dif-Pradalier.
Scalable quasi-neutrality solver for the gyrokinetic equation, INRIA, 2011, no 7611.
http://hal.inria.fr/inria-00590561_v2/

Other Publications

[41]
E. Anceaume, F. Castella, B. Sericola.
Analysis of a large number of Markov chains competing for transitions.
[42]
P. Chartier, J. M. Sanz-Serna, A. Murua.
Higher-order averaging, formal series and numerical integration II: the quasi-periodic case.
[43]
N. Crouseilles, E. Faou.
Approximate travelling wave solutions to the 2D Euler equation on the torus, 2011.
http://hal.inria.fr/hal-00567426/en
[44]
N. Crouseilles, E. Faou, M. Mehrenberger.
High order Runge-Kutta-Nyström splitting methods for the Vlasov-Poisson equation.
http://hal.inria.fr/inria-00633934/en
[45]
N. Crouseilles, E. Frénod, S. Hirstoaga, A. Mouton.
Two scale macro-micro decomposition of the Vlasov equation with a strong magnetic field, 2011.
http://hal.inria.fr/hal-00638617_v2/
[46]
A. Debussche.
Ergodicity results for the stochastic Navier-Stokes equations: an introduction, 2011, to appear.
[47]
A. Debussche, E. Faou.
Weak backward error analysis for SDEs, 2011, to appear.
[48]
E. Faou, L. Gauckler, C. Lubich.
Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus.
http://hal.inria.fr/hal-00622240/en
[49]
E. Faou, B. Grébert.
A Nekhoroshev type theorem for the nonlinear Schrödinger equation on the d-dimensional torus..
http://hal.inria.fr/hal-00466803/en
References in notes
[50]
E. Hairer.
Geometric integration of ordinary differential equations on manifolds, in: BIT, 2001, vol. 41, p. 996–1007.
[51]
E. Hairer, C. Lubich, G. Wanner.
Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics 31, Springer, Berlin, 2006.
[52]
E. Hairer, G. Wanner.
Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics 14, 2, Springer-Verlag, Berlin, 1996.
[53]
A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, A. Zanna.
Lie-group methods, in: Acta Numerica, 2000, p. 215–365.
[54]
C. Lubich.
A variational splitting integrator for quantum molecular dynamics, in: Appl. Numer. Math., 2004, vol. 48, p. 355–368.
[55]
C. Lubich.
On variational approximations in quantum molecular dynamics, in: Math.   Comp., 2009, to appear.
[56]
F. A. Potra, W. C. Rheinboldt.
On the numerical solution of Euler-Lagrange equations, in: Mech. Struct. & Mech., 1991, vol. 19, p. 1–18.
[57]
J. M. Sanz-Serna, M. P. Calvo.
Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.