Team Cagire

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Partnerships and Cooperations
Dissemination
Bibliography
PDF e-pub XML


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journal

[1]
E. Franquet, V. Perrier.
Runge-Kutta Discontinuous Galerkin method for reactive multiphase flows, 2011, submitted.
[2]
E. Franquet, V. Perrier.
Runge-Kutta Discontinuous Galerkin method for the approximation of Baer & Nunziato type multiphase models, 2011, submitted.
[3]
Y. Moguen, T. Kousksou, P. Bruel, J. Vierendeels, E. Dick.
Pressure-velocity coupling allowing acoustic calculation in low Mach number flow, 2011, submitted.
[4]
E. Motheau, T. Lederlin, J.-L. Florenciano, P. Bruel.
LES investigation of the flow through an effusion-cooled aeronautical combustor model, in: Flow Turbulence and Combustion, 2011, in press. [ DOI : 10.1007/s10494-011-9357-9 ]
[5]
V. Perrier.
A conservative method for the simulation of the isothermal Euler system with the van-der-Waals equation of state, in: Journal of Scientific Computing, 2011, vol. 48, no 1-3, p. 296-303. [ DOI : 10.1007/s10915-010-9415-9 ]
http://hal.inria.fr/inria-00633917/en

International Conferences with Proceedings

[6]
Y. Moguen, E. Dick, J. Vierendeels, P. Bruel.
Pressure-velocity coupling for unsteady low Mach number flow, in: Proceedings of the 5 t h International Conference on Advanced Computational Methods in Engineering, M. Hogge, R. V. Keer, E. Dick, B. Malengier, M. Slodicka, E. Béchet, C. Gueuzaine, L. Noels, J.-F. Remacle (editors), 2011, ISBN 978-2-9601143-1-7.
[7]
Y. Moguen, T. Kousksou, P. Bruel, J. Vierendeels, E. Dick.
Rhie-Chow interpolation for low Mach number flow computation allowing small time steps, in: Proceedings of the 6th International Symposium on Finite Volumes for Complex Applications, J. Fort, J. Fürst, J. Halama, R. Herbin, F. Hubert (editors), Springer Verlag, 2011, ISBN 978-3-642-20670-2.
[8]
Y. Moguen, T. Kousksou, E. Dick, P. Bruel.
On the role of numerical dissipation in unsteady low Mach number flows computations, in: Proceedings of the 6th International Conference on Computational Fluid Dynamics, A. Kuzmin (editor), Springer Verlag, 2011, ISBN 978-3-642-17883-2.
[9]
V. Perrier, E. Franquet.
Runge–Kutta Discontinuous Galerkin method for multi–phase compressible flows, in: International Conference on Computational Fluid Dynamics (ICCFD 2010), Springer, 2011.

Conferences without Proceedings

[10]
E. Franquet, V. Perrier.
Runge–Kutta Discontinuous Galerkin method for reactive multiphase flows, in: International Conference on numerical Methods For Multi-Material Fluid Flows (MULTIMAT 2011), 2011.
[11]
V. Perrier, E. Franquet.
High order method for multiphase compressible flows with RKDG schemes, in: European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs: Theory and Applications (HONOM 2011), 2011.
References in notes
[12]
R. Abgrall, R. Saurel.
Discrete equations for physical and numerical compressible multiphase mixtures, in: Journal of Computational Physics, 2003, vol. 186, no 361-396.
[13]
F. Bassi, A. Crivellini, S. Rebay, M. Savini.
Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, p. 507-540.
[14]
F. Bassi, S. Rebay.
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, p. 267–279.
http://dx.doi.org/10.1006/jcph.1996.5572
[15]
V. Billey, J. Periaux, B. Stoufflet, A. Dervieux, L. Fezoui, V. Selmin.
Recent improvements in Galerkin and upwind Euler solvers and application to 3-D transonic flow in aircraft design, in: Computer Methods in Applied Mechanics and Engineering, 1989, vol. 75, no 1-3, p. 409-414.
[16]
B. Cockburn, S. Hou, C.-W. Shu.
The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, p. 545–581.
http://dx.doi.org/10.2307/2008501
[17]
B. Cockburn, S. Y. Lin, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, p. 90–113.
[18]
B. Cockburn, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, p. 411–435.
http://dx.doi.org/10.2307/2008474
[19]
B. Cockburn, C.-W. Shu.
The Runge-Kutta local projection P 1 -discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, p. 337–361.
[20]
B. Cockburn, C.-W. Shu.
The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, p. 199–224.
http://dx.doi.org/10.1006/jcph.1998.5892
[21]
S. S. Colis.
Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002.
[22]
M. Feistauer, V. Kučera.
On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, p. 208–221.
http://dx.doi.org/10.1016/j.jcp.2007.01.035
[23]
R. J. Goldstein, E. Eckert, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulacki, U. Kortshagen, S. Garrick.
Heat transfer - A review of 2000 literature, in: International Journal of Heat and Mass Transfer, 2002, vol. 45, no 14, p. 2853-2957. [ DOI : DOI: 10.1016/S0017-9310(02)00027-3 ]
[24]
R. Hartmann, P. Houston.
Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, p. 1–20.
[25]
R. Hartmann, P. Houston.
Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. II. Goal-oriented a posteriori error estimation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 2, p. 141–162.
[26]
C. Johnson, A. Szepessy, P. Hansbo.
On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, p. 107–129.
http://dx.doi.org/10.2307/2008684
[27]
H. Lee, J. Park, J. Lee.
Flow visualization and film cooling effectiveness measurements around shaped holes with compound angle orientations, in: Int. J. Heat Mass Transfer, 2002, vol. 45, p. 145-156.
[28]
P. Lesaint, P.-A. Raviart.
On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, p. 89–123. Publication No. 33.
[29]
F. Lörcher, G. Gassner, C.-D. Munz.
An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, p. 5649–5670.
http://dx.doi.org/10.1016/j.jcp.2008.02.015
[30]
R. Margason.
Fifty Years of Jet in Cross Flow Research, in: NATO AGARD Conference, Winchester, UK, 1993, vol. CP-534, p. 1.1-1.41.
[31]
A. Most.
Étude numérique et expérimentale des écoulements pariétaux avec transfert de masse à travers une paroi multi-perforée, Pau University, 2007.
[32]
A. Most, N. Savary, C. Bérat.
Reactive flow modelling of a combustion chamber with a multiperforated liner, in: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, AIAA Paper 2007-5003, 8-11 July 2007.
[33]
E. Motheau, T. Lederlin, P. Bruel.
LES investigation of the flow through an effusion-cooled aeronautical combustor model, in: 8th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Marseille, France, June 2010, p. 872-877.
[34]
C. Prière.
Simulation aux grandes échelles: application au jet transverse, INP Toulouse, 2005.
[35]
W. Reed, T. Hill.
Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479.
[36]
S. Rhebergen, O. Bokhove, J. J. W. van der Vegt.
Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, in: J. Comput. Phys., 2008, vol. 227, no 3, p. 1887–1922.
http://dx.doi.org/10.1016/j.jcp.2007.10.007
[37]
S. Smith, M. Mungal.
Mixing, structure and scaling of the jet in crossflow, in: Journal of Fluid Mechanics, 1998, vol. 357, p. 83-122.
[38]
X. Zhang, Y. Xia, C.-W. Shu.
Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes, in: Journal of Scientific Computing., 2011,  In press. [ DOI : 10.1007/s10915-011-9472-8 ]