Project Team Anubis

Members
Overall Objectives
Scientific Foundations
Application Domains
New Results
Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
PDF e-pub XML


Bibliography

Major publications by the team in recent years
[1]
B. Ainseba.
Age-dependent population dynamics diffusive systems, in: Discrete and Continuous Dynamical Systems- Series B, 2004, vol. 4, no 4, p. 1233–1247.
[2]
B. Ainseba, S. Anita, M. Langlais.
Internal stabilizability of some diffusive models, in: Journal of Mathematical Analysis and Applications, 2002, vol. 265, p. 91–102.
[3]
B. Ainseba, W. Fitzgibbon, M. Langlais, J. Morgan.
An application of homogenization techniques to population dynamics models, in: Communications on Pure and Applied Analysis, 2002, vol. 1, p. 19–33.
[4]
B. Ainseba, F. Heiser, M. Langlais.
A mathematical analysis of a predator-prey system in a highly heterogeneous environment, in: Differential and Integral Equations, 2002, vol. 15, no 4, p. 385-404.
[5]
M. Bendhamane, M. Langlais, M. Saad.
On some anisotropic reaction-diffusion systems with L 1 -data modeling the propagation of an epidemic disease, in: Nonlinear Analysis, Series, Theory and Methods, 2003, vol. 54, p. 617–636.
[6]
K. Berthier, M. Langlais, P. Auger, D. Pontier.
Dynamics of a feline virus with two transmission modes within exponentially growing host populations, in: Proc. R. Soc. London, série B, 2000, vol. 267, p. 2049–2056.
[7]
J. Burie, A. Calonnec, M. Langlais.
Modeling of the Invasion of a fungal Disease over a vineyard, in: Mathematical Modeling of Biological Systems, volume II, A. Deutsch, R. Bravo. de la Para, R.J. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, H. Metz (editors), Springer, 2008, p. 12-24.
http://hal.archives-ouvertes.fr/hal-00200728/en/
[8]
W. Fitzgibbon, M. Langlais.
Weakly coupled hyperbolic systems modeling the circulation of infectious disease in structured populations, in: Math. Biosciences, 2000, vol. 165, p. 79–95.
[9]
E. Fromont, M. Langlais, D. Pontier.
Effect of spatial heterogeneity at the inter-population scale on the dynamics of FeLV, in: J. Theoret. Biol., 2003, vol. 223, p. 465–475.
[10]
J. Henry, A. Ramos.
Factorization of second order elliptic boundary value problems by dynamic programming, in: Nonlinear Analysis, 2004, no 59, p. 629–647.
[11]
M. Langlais, F. Milner.
Existence and uniqueness of solutions for a diffusion model of host-parasite dynamics, in: J. Math. Anal. and Applications, 2003, vol. 279, p. 463–474.
[12]
C. Suppo, J.-M. Naulin, M. Langlais, M. Artois.
A modeling approach of vaccination and sterilization programms for rabies control in fox populations, in: Proc. R. Soc. London, série B, 2000, vol. 267, p. 1575–1582.
[13]
C. Wolf, F. Sauvage, D. Pontier, M. Langlais.
A multi–patch model with periodic demography for a bank vole - Hantavirus system with variable maturation rate, in: Math. Population Studies, 2006, vol. 13, no 3, p. 153–177.
[14]
C. Wolf.
A nonlinear and nonlocal mathematical problem modeling the propagation of a Hantavirus in structured bank vole populations, in: Discrete and Continuous Dynamical Systems, B, 2004, vol. 4, p. 1065–1089.
Publications of the year

Articles in International Peer-Reviewed Journal

[15]
A. Ben Abda, J. Henry, F. Jday.
Boundary data completion: the method of boundary value problem factorization, in: Inverse Problems, April 2011, vol. 27, no 5. [ DOI : 10.1088/0266-5611/27/5/055014 ]
http://hal.inria.fr/inria-00617511/en
[16]
A. Ducrot.
Travelling waves for a size and space structured model in population dynamics: Point to sustained oscillating solution connections, in: Journal of Differential Equations, 2011, p. 410–449.
http://hal.inria.fr/hal-00545503/en
[17]
A. Ducrot, V. Guyonne, M. Langlais.
Some remarks on the qualitative properties of solutions to a predator–prey model posed on non coincident spatial domains, in: discrete and continuous Dynamical Systems series S, February 2011, vol. 4, no 1, p. 67-82. [ DOI : 10.3934/dcdss.2011.4.67 ]
http://hal.inria.fr/hal-00541302/en
[18]
J. Henry, B. Louro, M. D. C. Soares.
Factorization of linear elliptic boundary value problems in non cylindrical domains, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, July 2011, vol. 349, no 15-16, p. 879-882. [ DOI : 10.1016/j.crma.2011.07.003 ]
http://hal.inria.fr/inria-00617516/en

Scientific Books (or Scientific Book chapters)

[19]
B. Ainseba, M. Bendahmane, A. Lopez.
Solving the Laplacian Equation in 3D using Finite Element Method in C# for Structural Analysis, in: Vehiculos Aeroespaciales, E. C. Alejandro Pedroza, F. J. Mendieta (editors), Sociedad Mexicana de Ciencia y Tecnología Aeroespacial (Mexican Society of Aerospace Science, and Technology), July 2011.
http://hal.inria.fr/hal-00656481/en/
References in notes
[20]
G. Allaire.
Homogeneization and two-scale convergence, in: SIAM J. Math. Anal., 1992, vol. 23, p. 1482-1518.
[21]
S. Anita.
Analysis and control of age-dependent population dynamics, Kluwer academic publisher, 2000.
[22]
J.-B. Burie, A. Calonnec, A. Ducrot.
Singular Perturbation Analysis of travelling Waves for a Model in Phytopathology, in: Mathematical Modeling of Natural Phenomena, 2006, vol. 1.
[23]
E. D'Agata, P. Magal, D. Olivier, S. Ruan, G. F. Webb.
Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration, in: J. Theoretical Biology, 2007, vol. 249, p. 487–499.
[24]
E. D'Agata, P. Magal, S. Ruan, G. F. Webb.
Asymptotic behavior in nosocomial epidemic models with antibiotic resistance, in: Differential Integral Equations, 2006, vol. 19, p. 573–600.
[25]
S. Gaucel, M. Langlais.
Finite time and global existence for solutions to some singular reaction-diffusion systems, in: Discrete Contin. Dyn. Syst. B, 2007, vol. 8, p. 61-72.
[26]
H. Grundmann, B. Hellriegel.
Mathematical modelling: a tool for hospital infection control, in: Lancet Infect. Dis., 2006, vol. 6, p. 39–45.
[27]
M. Iannelli.
Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori, Pisa, 1995.
[28]
J.-L. Lions.
Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, 1968.
[29]
M. Ouarit, J.-P. Yvon, J. Henry.
Optimal weighting design for distributed parameter system estimation, in: Optimal Control Applications and Methods, 2001, vol. 22, no 1, p. 37–49.
[30]
G.F. Webb, E. D'Agata, P. Magal, S. Ruan.
A model of antibiotic resistant bacterial epidemics in hospitals, in: Proceedings of the National Academics of Sciences of the USA, 2005, vol. 102, p. 13343–13348.
[31]
G.F. Webb.
Theory of age nonlinear population dynamics, Marcel Dekker, New York, 1985.