Team dracula

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Publications of the year

Articles in International Peer-Reviewed Journal

[1]
M. Adimy, F. Crauste, A. El Abdllaoui.
Boundedness and Lyapunov Function for a Nonlinear System of Hematopoietic Stem Cell Dynamics, in: Comptes Rendus Mathematique, 2010, vol. 348, no 7-8, p. 373-377.
http://hal.inria.fr/hal-00542477/en
[2]
M. Adimy, F. Crauste, H. Hbid, R. Qesmi.
Stability and Hopf bifurcation for a cell population model with state-dependent delay, in: SIAM J. Appl. Math, 2010, vol. 70, no 5, p. 1611-1633.
http://hal.inria.fr/hal-00542655/en
[3]
M. Adimy, F. Crauste, C. Marquet.
Asymptotic behavior and stability switch for a mature-immature model of cell differentiation, in: Nonlinear Analysis: Real World Applications, 2010, vol. 11, no 4, p. 2913-2929. [ DOI : 10.1016/j.nonrwa.2009.11.001 ]
http://hal.inria.fr/hal-00542644/en
[4]
M. Adimy, K. Ezzinbi, M. Alia.
Extrapolation Spaces and Partial Neutral Functional Differential Equations with infinite delay, in: Differential and integral equations, 2011.
http://hal.inria.fr/inria-00554435/en
[5]
E. Arner, P. O. Westermark, K. L. Spalding, T. Britton, M. Rydén, J. Frisén, S. Bernard, P. Arner.
Adipocyte turnover: relevance to human adipose tissue morphology, in: Diabetes, 2010, vol. 59, no 1, p. 105-9. [ DOI : 10.2337/db09-0942 ]
http://hal.inria.fr/hal-00542528/en
[6]
O. Bergmann, S. Zdunek, K. Alkass, H. Druid, S. Bernard, J. Frisén.
Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover, in: Experimental Cell Research, 2011, vol. 317, no 2, p. 188-94. [ DOI : 10.1016/j.yexcr.2010.08.017 ]
http://hal.inria.fr/hal-00542527/en
[7]
S. Bernard, B. Cajavec Bernard, F. Lévi, H. Herzel.
Tumor growth rate determines the timing of optimal chronomodulated treatment schedules, in: Plos Computational Biology, 2010, vol. 6, no 3, e1000712 p. [ DOI : 10.1371/journal.pcbi.1000712 ]
http://hal.inria.fr/hal-00470302/en
[8]
S. Bernard, J. Frisén, K. L. Spalding.
A mathematical model for the interpretation of nuclear bomb test derived 14C incorporation in biological systems, in: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, vol. 268, no 7-8, p. 1295-1298. [ DOI : 10.1016/j.nimb.2009.10.156 ]
http://hal.inria.fr/hal-00544517/en
[9]
A. Coulon, O. Gandrillon, G. Beslon.
On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter, in: BMC Syst Biol, 2010, vol. 4, 2 p. [ DOI : 10.1186/1752-0509-4-2 ]
http://hal.inria.fr/hal-00542455/en
[10]
F. Crauste, I. Demin, O. Gandrillon, V. Volpert.
Mathematical study of feedback control roles and relevance in stress erythropoiesis, in: Journal of Theoretical Biology, 2010, vol. 263, no 3, p. 303-16. [ DOI : 10.1016/j.jtbi.2009.12.026 ]
http://hal.inria.fr/hal-00542457/en
[11]
I. Demin, F. Crauste, O. Gandrillon, V. Volpert.
A multi-scale model of erythropoiesis, in: Journal of Biological Dynamics, 2010, vol. 4, no 1, p. 59-70.
http://hal.inria.fr/hal-00542669/en
[12]
A. T. Nguyen-Lefebvre, S. Gonin-Giraud, A. Scherl, P. Arboit, L. Granger, J.-C. Sanchez, J.-J. Diaz, O. Gandrillon, J.-J. Madjar.
Identification of human, rat and chicken ribosomal proteins by a combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, in: Journal of proteomics, 2010. [ DOI : 10.1016/j.jprot.2010.10.007 ]
http://hal.inria.fr/hal-00542454/en
[13]
C. Royer, J. Briolay, A. Garel, P. Brouilly, S.-I. Sasanuma, M. Sasanuma, M. Shimomura, C. Keime, O. Gandrillon, Y. Huang, G. Chavancy, K. Mita, P. Couble.
Novel genes differentially expressed between posterior and median silk gland identified by SAGE-aided transcriptome analysis, in: Insect Biochemistry and Molecular Biology, 2010. [ DOI : 10.1016/j.ibmb.2010.11.003 ]
http://hal.inria.fr/hal-00542448/en
[14]
V. Volpert, K. Allali, F. Bikany, A. Taik.
Linear stability analysis of reaction front propagation in liquids with vibrations, in: IEJPAM, 2010, vol. 1, no 2, p. 196-215.
http://hal.inria.fr/hal-00547725/en
[15]
V. Volpert, N. Apreutesei, N. Bessonov, V. Vougalter.
Spatial structures and generalized travelling waves for an integro-differential equation, in: Discrete and Continuous Dynamical Systems: Series B, 2010, vol. 13, no 3, p. 537-557.
http://hal.inria.fr/hal-00547574/en
[16]
V. Volpert, I. Demin, A. Ducrot.
Spatial distribution of cell populations in the process of erythropoiesis, in: IEJPAM, 2010, vol. 1, no 2, p. 143-161.
http://hal.inria.fr/hal-00547728/en
[17]
V. Volpert, I. Demin.
Existence of Waves for a Nonlocal Reaction-Diffusion Equation, in: Math. Model. Nat. Phenom., 2010, vol. 5, no 5, p. 80-101.
http://hal.inria.fr/hal-00547724/en
[18]
V. Volpert, V. Vougalter.
On the solvability conditions for some non-Fredholm operators, in: IJPAM, 2010, vol. 20, no 2, p. 169-191.
http://hal.inria.fr/hal-00547729/en

Scientific Books (or Scientific Book chapters)

[19]
F. Crauste.
Stability and Hopf bifurcation for a first-order linear delay differential equation with distributed delay, in: Complex Time Delay Systems (Ed. F. Atay), Springer, 2010, 320 p.
http://hal.inria.fr/hal-00542651/en

Other Publications

[20]
J. Clairambault, S. Gaubert, T. Lepoutre.
Circadian rhythm and cell population growth, 2010.
http://hal.inria.fr/hal-00492983/en
[21]
P. Kurbatova, S. Bernard, N. Bessonov, F. Crauste, I. Demin, C. Dumontet, S. Fischer, V. Volpert.
Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside, 2010.
http://hal.inria.fr/hal-00538496/en

References in notes

[22]
M. Adimy, F. Crauste.
Global stability of a partial differential equation with distributed delay due to cellular replication, in: Nonlinear Analysis, 2003, vol. 54, no 8, p. 1469-1491.
[23]
M. Adimy, F. Crauste, L. Pujo-Menjouet.
On the stability of a maturity structured model of cellular proliferation, in: Discrete Contin. Dyn. Syst. Ser. A, 2005, vol. 12, no 3, 501–522 p.
[24]
R. Apostu, M. Mackey.
Understanding cyclical thrombocytopenia: A mathematical modelling approach, in: Journal of Theoretical Biology, 2008, vol. 251, no 2, p. 297-316.
[25]
S. Bernard, J. Bélair, M. Mackey.
Oscillations in cyclical neutropenia: new evidence based on mathematical modelling, in: J. Theor. Biol., 2003, vol. 223, no 3, p. 283-298.
[26]
N. Bessonov, L. Pujo-Menjouet, V. Volpert.
Cell modelling of hematopoiesis, in: Math. Model. Nat. Phenomena, 2006, vol. 1, no 2, p. 81-103.
[27]
J. Bélair, M. Mackey, J. Mahaffy.
Age-structured and two-delay models for erythropoiesis, in: Mathematical Biosciences, 1995, vol. 128, no 1-2, p. 317-346.
[28]
A. Ducrot, V. Volpert.
On a model of leukemia development with a spatial cell distribution, in: Math. Model. Nat. Phenomena, 2007, vol. 2, no 3, p. 101-120.
[29]
C. Haurie, D. Dale, M. Mackey.
Cyclical Neutropenia and Other Periodic Hematological Disorders: A Review of Mechanisms and Mathematical Models, in: Blood, 1998, vol. 92, no 8, p. 2629-2640.
[30]
M. Mackey.
Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, in: Blood, 1978, vol. 51, no 5, p. 941-956.
[31]
M. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu.
Periodic Oscillations of Blood Cell Populations in Chronic Myelogenous Leukemia, in: SIAM Journal on Mathematical Analysis, 2006, vol. 38, no 1, p. 166-187.
[32]
F. Michor, T. Hughes, Y. Iwasa, S. Branford, N. Shah, C. Sawyers.
Dynamics of chronic myeloid leukaemia, in: Nature, 2005, vol. 435, no 7046, p. 1267-1270.
[33]
B. Perthame.
Transport Equations in Biology, Birkhauser Basel, 2006.
[34]
C. Rubiolo, D. Piazzolla, K. Meissl, H. Beug, J. Huber, A. Kolbus.
A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation, in: Blood, 2006, vol. 108, no 1, p. 152-159.
[35]
G. Webb.
Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, 1985.

previous
next