Team disco

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
C. Bonnet, J. Partington.
Analysis of fractional delay systems of retarded and neutral type, in: Automatica, 2002, vol. 38, p. 1133–1138.
[2]
C. Bonnet, J. Partington.
Stabilization of some fractional delay systems of neutral type, in: Automatica, 2007, vol. 43, p. 2047–2053.
[3]
M. Malisoff, F. Mazenc.
Constructions of Strict Lyapunov Functions, Communications and Control Engineering Series, Springer-Verlag London Ltd., 2009.
[4]
F. Mazenc, P. Bliman.
Backstepping design for time-delay nonlinear systems, in: IEEE Transactions on Automatic Control, January 2006, vol. 51, no 1, p. 149–154.
[5]
W. Michiels, S.-I. Niculescu.
Stability and Stabilization of Time-Delay Systems. An Eigenvalue-Based Approach, Advances in Design and Control, SIAM: Philadelphia, 2007, vol. 12.
[6]
S.-I. Niculescu.
Delay Effects on Stability: a Robust Control Approach, Lecture Notes in Control and Information Sciences, Springer, 2001, vol. 269.
[7]
S. Olaru, D. Dumur.
Avoiding constraints redundancy in predictive control optimization routines, in: IEEE Trans. Automat. Control, 2005, vol. 50, no 9, p. 1459–1465.
[8]
A. Quadrat.
The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. Part I: (Weakly) doubly coprime factorizations, Part II: Internal stabilization, in: SIAM J. Control & Optimization, 2003, vol. 42, no 1, p. 266–299, 300–320.
[9]
A. Quadrat.
On a general structure of the stabilizing controllers based on stable range, in: SIAM J. Control & Optimization, 2004, vol. 42, no 6, p. 2264–2285.
[10]
G. Sandou.
Particle swarm optimization: an efficient tool for the design of automatic control law, in: European Control Conference, Budapest, Hungary, August 23rd-26th 2009.

Publications of the year

Doctoral Dissertations and Habilitation Theses

[11]
A. Quadrat.
Systèmes et Structures : Une approche de la théorie mathématique des systèmes par l'analyse algébrique constructive, University of Nice, September 2010, Habilitation à diriger des Recherches, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[12]
C. Bonnet, A. Fioravanti, J. Partington.
Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis, in: SIAM Journal of Control and Optimization, 2010, to appear.
[13]
H. Borsenberger, P. Dessante, G. Sandou.
Unit Commitment with production cost uncertainty: a recourse programming method, in: Journal of Energy and Power Engineering, 2010, to appear.
[14]
M. S. Boudellioua, A. Quadrat.
Serre's reduction of linear functional systems, in: Mathematics in Computer Science, 2010, to appear, DOI 10.1007/s11786-010-0057-y.
[15]
B. Bradu, P. Gayet, S.-I. Niculescu, E. Witrant.
Modeling of the very low pressure helium flow in the LHC cryogenic distribution line after a quench, in: Cryogenics, 2010, vol. 50, p. 71–77.
[16]
J. Chen, P. Fu, S.-I. Niculescu, Z. Guan.
An eigenvalue perturbation approach to stability analysis, Part I: Eigenvalue series of matrix operator, in: SIAM Journal on Optimization and Control, 2010, to appear.
[17]
J. Chen, P. Fu, S.-I. Niculescu, Z. Guan.
Eigenvalue perturbation with application to time-delay systems, Part II: When will zeros cross imaginary axis?, in: SIAM Journal on Optimization and Control, 2010, to appear.
[18]
C. De Persis, F. Mazenc.
Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach, in: Mathematics of Control, Signals, and Systems, 2010, vol. 21, p. 337–370.
[19]
P. Falugi, S. Olaru, D. Dumur.
Multi-model predictive control based on LMI. From the adaptation of the state-space model to the analytic description of the control law, in: International Journal of Control, 2010, vol. 83, no 8, p. 1548–1563.
[20]
R. Gielen, S. Olaru, W. Heemels, N. van de Wouw, S.-I. Niculescu.
On polytopic approximations as a modeling framework for systems with time-varying delays, in: Automatica, 2010, vol. 46, no 3, p. 615–619.
[21]
R. Gielen, S. Olaru, M. Lazar, W. Heemels, N. van de Wouw, S.-I. Niculescu.
On polytopic inclusions as a modeling framework for systems with time-varying delays, in: Automatica, 2010, vol. 46, no 3, p. 615 - 619.
[22]
A. Gonçalves, A. Fioravanti, J. Geromel.
Filtering of discrete-time Markov jump linear systems with uncertain transition probabilities, in: International Journal of Robust and Nonlinear Control, 2010, to appear.
[23]
A. Gonçalves, A. Fioravanti, J. Geromel.
Markov jump linear systems and filtering through network transmitted measurements, in: Signal Processing, 2010, vol. 90, no 10, p. 2842-2850.
[24]
M. E. Hajji, F. Mazenc, J. Harmand.
A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, in: Mathematical Biosciences and Engineering, 2010, vol. 7, p. 641–656.
[25]
X. Li, A. Cela, S.-I. Niculescu, A. Reama.
Some problems in the stability of networked-control systems with periodic scheduling, in: International Journal of Control, 2010, vol. 83, no 5, p. 996–1008.
[26]
F. Mazenc, O. Bernard.
Asymptotically stable interval observers for planar systems with complex poles, in: IEEE Transactions on Automatic Control, 2010, vol. 55, p. 523–527.
[27]
F. Mazenc, O. Bernard.
Interval observers for linear time-invariant systems with disturbances, in: Automatica, 2010, Brief Paper, in press, DOI:10.1016/j.automatica.2010.10.019.
[28]
F. Mazenc, Z.-P. Jiang.
Global output feedback stabilization of a chemostat with an arbitrary number of species, in: IEEE Transactions on Automatic Control, 2010, vol. 55, p. 2579–2575.
[29]
F. Mazenc, Z.-P. Jiang.
Persistence for a chemostat with many species., in: Dynamics of Continuous, Discrete and Impulsive Systems, 2010, to appear.
[30]
F. Mazenc, M. Malisoff, M. de Queiroz.
Uniform global asymptotic stability of adaptive cascaded nonlinear systems with unknown high-frequency gains, in: Nonlinear Analysis, 2010, to appear.
[31]
F. Mazenc, M. Malisoff.
Remarks on output feedback stabilization of two-species chemostats models, in: Automatica, 2010, vol. 46, p. 739–724.
[32]
F. Mazenc, M. Malisoff.
Stabilization of a chemostat model with Haldane growth functions and a delay in the measurements, in: Automatica, 2010, vol. 46, p. 1428–1436.
[33]
F. Mazenc, M. Malisoff.
Strict Lyapunov function constructions under LaSalle conditions with an application to Lotka-Volterra systems, in: IEEE Transactions on Automatic Control, 2010, vol. 55, p. 841–854.
[34]
F. Mazenc, S.-I. Niculescu.
Generating positive and stable solutions through delayed state feedback, in: Automatica, 2010, to appear.
[35]
S.-I. Niculescu, P. Kim, K. Gu, P. Lee, D. Levy.
Stability crossing boundaries of delay systems modeling immune dynamics in leukemia, in: Discrete and Continuous Dynamical Systems - Series B (DCDS-B), January 2010, vol. 15, no 1, p. 129–156.
[36]
S.-I. Niculescu, M. Putinar.
A toric positivstellensatz with applications to time delay system, in: Comptes rendus de l'académie des sciences (série Mathématiques), 2010, to appear.
[37]
R. Sipahi, S.-I. Niculescu.
Stability of car following with human memory effects and automatic headway compensation, in: Philosophical Transactions of the Royal Society A, 2010, to appear.
[38]
R. Villafuerte, S. Mondié, S.-I. Niculescu.
Stability analysis and estimate of the region of attraction of a human respiratory model, in: IMA Journal on Mathematical Control and Information, 2010, to appear.
[39]
E. Witrant, A. D'Innocenzo, G. Sandou, F. Santucci, M. Di Benedetto, A. Isaksson, K. Johansson, S.-I. Niculescu, S. Olaru, E. Serra, S. Tennina, U. Tiberi.
Wireless ventilation control for large-scale systems: The mining industrial case, in: International Journal of Robust and Nonlinear Control, 2010, vol. 20, no 2, p. 226–251.
[40]
E. Witrant, S.-I. Niculescu.
Modeling and control of large convective flows with time-delays, in: Mathematics in Engineering, Science and Aerospace, 2010, vol. 1, no 2, p. 191–205.

International Peer-Reviewed Conference/Proceedings

[41]
H. Borsenberger, P. Dessante, G. Sandou.
Unit commitment with production cost uncertainty, a recourse programming method, in: Proceedings of the IFAC Conference on Control Methodologies and Technology for Energy Efficiency, Villamoure (Portugal), March 2010.
[42]
M. S. Boudellioua, A. Quadrat.
Further results on Serre's reduction of multidimensional linear systems, in: Proceedings of 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest (Hungary), MTNS, 05-09/07 2010.
[43]
T. Cluzeau, A. Quadrat.
Module structure of classical multidimensional linear systems appearing in mathematical physics, in: Proceedings of 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest (Hungary), MTNS, 05-09/07 2010.
[44]
T. Cluzeau, A. Quadrat.
Serre's reduction of linear partial differential systems based on holonomy, in: Proceedings of 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest (Hungary), MTNS, 05-09/07 2010.
[45]
T. Cluzeau, A. Quadrat.
Symmetries, parametrizations and potentials of multidimensional linear systems, in: Proceedings of 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest (Hungary), MTNS, 05-09/07 2010.
[46]
A. Fioravanti, C. Bonnet, H. Ozbay.
Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis, in: IEEE Conference on Decision and Control, Atlanta, USA, 2010, 2010.
[47]
A. Fioravanti, C. Bonnet, H. Ozbay, S.-I. Niculescu.
A numerical method to find stability windows and unstable poles for linear neutral time-delay systems, in: 9th IFAC Workshop on Time-Delay Systems, 2010.
[48]
W. Heemels, N. van de Wouw, R. Gielen, M. Donkers, L. Hetel, S. Olaru, M. Lazar, J. Daafouz, S.-I. Niculescu.
Comparison of overapproximation methods for stability analysis of networked control systems, in: Proceedings of the 13th ACM international conference on Hybrid systems: computation and control, ACM, 2010, p. 181–190.
[49]
S. Ighobriouen, G. Sandou.
Optimisation multi-objectifs par essaim particulaire pour la synthèse de correcteurs, in: Proceedings of 10th Conférence Internationale Francophone d'Automatique, Nancy (France), June 2010.
[50]
B. Liacu, C. Mendez-Barrios, S.-I. Niculescu, S. Olaru.
Some remarks on the fragility of PD controllers for SISO systems with I/O delays, in: 4th International Conference on System Theory and Control, Sinaia, Romania, 2010.
[51]
B. Liacu, C. Mendez-Barrios, S.-I. Niculescu, S. Olaru.
Some remarks on the fragility of transparency and stability in general 4-channel architecture for bilateral teleoperation with delay, in: International Conference on Control, Automation and Systems, Korea, 2010.
[52]
W. Lombardi, A. Luca, S. Olaru, S.-I. Niculescu, J. Cheong.
Feedback Stabilization and motion synchronization of systems with time-delay in the communication network, in: 9th IFAC Workshop on Time-Delay Systems, 2010.
[53]
W. Lombardi, A. Luca, S. Olaru, S.-I. Niculescu.
State admissible sets for discrete systems under delay constraints, in: Proc. IEEE ACC, 2010.
[54]
F. Mazenc, O. Bernard.
Time-varying interval observers for linear systems with additive disturbances, in: IFAC Symposium on Nonlinear Control Systems (NOLCOS 2010), 2010.
[55]
F. Mazenc, M. Malisoff, M. de Queiroz.
Model-based nonlinear control of the human heart rate during treadmill exercising, in: IEEE Conference on Decision and Control, Atlanta, USA, 2010, 2010.
[56]
F. Mazenc, M. Malisoff, M. de Queiroz.
On uniform global asymptotic stability of adaptive systems with unknown control gains, in: American Control Conference, Baltimore, MD, 2010, 2010.
[57]
F. Mazenc, M. Malisoff.
Further results on robust output feedback control for the chemostat dynamics, in: IEEE Conference on Decision and Control, Atlanta, USA, 2010, 2010.
[58]
F. Mazenc, M. Malisoff.
Stabilization of two-species chemostats with delayed measurements and Haldane growth functions, in: American Control Conference, Baltimore, MD, 2010, 2010.
[59]
F. Mazenc, S.-I. Niculescu.
Stabilizing controllers for delays systems subject to positivity constraints, in: 9th IFAC Workshop on Time Delay Systems, TDS 2010, 2010.
[60]
H. Ozbay, H. Benjelloun, C. Bonnet, J. Clairambault.
Absolute stability of a system with distributed delays modeling cell dynamics in leukemia, in: Proceedings of 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest (Hungary), MTNS, 05-09/07 2010.
[61]
H. Ozbay, H. Benjelloun, C. Bonnet, J. Clairambault.
Stability conditions for a system modeling cell dynamics in leukemia, in: 9th IFAC Workshop on Time-Delay Systems, MTNS, 2010.
[62]
A. Quadrat.
Extendability of multidimensional linear systems, in: Proceedings of 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest (Hungary), MTNS, 05-09/07 2010.
[63]
A. Quadrat.
Purity filtration of 2-dimensional linear systems, in: Proceedings of 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest (Hungary), MTNS, 05-09/07 2010.
[64]
A. Quadrat, D. Robertz.
Controllability and differential flatness of linear analytic ordinary differential systems, in: Proceedings of 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest (Hungary), MTNS, 05-09/07 2010.
[65]
G. Sandou, S. Olaru, E. Witrant, S.-I. Niculescu.
Receding horizon control: an effective methodology for energy management in complex systems, in: Proceedings of the IFAC Conference on Control Methodologies and Technology for Energy Efficiency, Villamoure (Portugal), March 2010.

National Peer-Reviewed Conference/Proceedings

[66]
H. Borsenberger, P. Dessante, G. Sandou.
Optimisation de la production dans un réseau d'énergie soumis à des incertitudes sur le coût de production, in: Proceedings of the 11ième congrès de la société française de recherche opérationnelle et d'aide à la décision, ROADEF 2010, Toulouse (France), February 2010.
[67]
A. Gonçalves, A. Fioravanti, J. Geromel.
Filtering for discrete-time Markov jump systems with network transmitted model, in: IEEE Conference on Decision and Control, Atlanta, USA, 2010, December 2010.
[68]
A. Gonçalves, A. Fioravanti, J. Geromel.
Filtragem de medidas transmitidas por rede usando sistemas com saltos Markovianos a tempo discreto, in: XVIII Congresso Brasileiro de Automática (CBA2010), September 2010.
[69]
R. Korogui, A. Fioravanti, J. Geromel.
Análise de estabilidade e controle Im1 $H_\#8734 $ de sistemas lineares com atraso, in: XVIII Congresso Brasileiro de Automática (CBA2010), September 2010.

Workshops without Proceedings

[70]
C. Bonnet.
Im1 $H_\#8734 $ -stability of neutral delay systems and neutral fractional systems, in: Workshop Ananlyse et commande des systèmes (MACS4), 2010.
[71]
H. Ozbay, C. Bonnet, H. Benjelloun, J. Clairambault.
Global stability analysis of a system modeling cell dynamics in acute myelogenous leukemia, in: The Third Conference on Computational and Mathematical Population Dynamics (CMPD3), June 2010, 186 p.

Scientific Books (or Scientific Book chapters)

[72]
A. Quadrat.
An introduction to constructive algebraic analysis and its applications, in: Les cours du CIRM, Journées Nationales de Calcul Formel (2010), CIRM, 2010, vol. 1, no 2, p. 281–471.
[73]
G. Sandou, S. Ighobriouen.
Using monobjective and multiobjective particle swarm optimization for the tuning of process control laws, in: Particle Swarm Optimization: Theory, Techniques, Applications, A. E. Olsson (editor), Nova Science Publishers, 2010, p. 1–30.

Internal Reports

[74]
M. S. Boudellioua, A. Quadrat.
Serre's reduction of linear functional systems, INRIA, 2010.
http://hal.archives-ouvertes.fr/inria-00459722/fr/
[75]
A. Quadrat.
An introduction to constructive algebraic analysis and its applications, INRIA, 2010.
http://hal.archives-ouvertes.fr/inria-00506104/fr/

References in notes

[76]
M. Adimy, F. Crauste, A. El.
Discrete maturity-structured model of cell differentiaton with application to acute myeloid leukemia, in: J. Biological systems, 2008, vol. 16, no 3, p. 395–424.
[77]
J. E. Bjork.
Rings of Differential Operators, North Holland, 1979.
[78]
J. E. Bjork.
Analytic Im10 $\#119967 $ -modules and Applications, Academic Press, 1987, vol. 2.
[79]
F. Chyzak, A. Quadrat, D. Robertz.
Effective algorithms for parametrizing linear control systems over Ore algebras, in: Appl. Algebra Engrg. Comm. Comput., 2005, vol. 16, p. 319–376.
[80]
F. Chyzak, A. Quadrat, D. Robertz.
OreModules : A symbolic package for the study of multidimensional linear systems, in: Applications of Time-Delay Systems, J. Chiasson, J.-J. Loiseau (editors), Lecture Notes in Control and Information Sciences 352, Springer, 2007, p. 233–264.
http://wwwb.math.rwth-aachen.de/OreModules
[81]
F. Chyzak, B. Salvy.
Non-commutative elimination in Ore algebras proves multivariate identities, in: J. Symbolic Comput., 1998, vol. 26, p. 187–227.
[82]
T. Cluzeau, A. Quadrat.
Factoring and decomposing a class of linear functional systems, in: Linear Algebra Appl., 2008, vol. 428, p. 324–381.
[83]
T. Cluzeau, A. Quadrat.
Serre's reduction of linear partial differential systems with holonomic adjoints, 2010, submitted for publication.
[84]
T. Cluzeau, A. Quadrat.
OreMorphisms : A homological algebraic package for factoring, reducing and decomposing linear functional systems, in: Topics in Time-Delay Systems: Analysis, Algorithms and Control, J.-J. Loiseau, W. Michiels, S.-I. Niculescu, R. Sipahi (editors), Lecture Notes in Control and Information Sciences 388, Springer, 2010, p. 179–196.
http://www-sop.inria.fr/members/Alban.Quadrat/OreMorphisms/index.html
[85]
S. C. Coutinho, M. P. Holland.
Module structure of rings of differential operators, in: Proc. London Math. Soc., 1988, vol. 57, p. 417–432.
[86]
A. Fabiańska, A. Quadrat.
Applications of the Quillen-Suslin theorem to multidimensional systems theory, in: Gröbner Bases in Control Theory and Signal Processing, H. Park, G. Regensburger (editors), Radon Series on Computation and Applied Mathematics, de Gruyter, 2007, vol. 3, p. 23–106.
http://wwwb.math.rwth-aachen.de/QuillenSuslin
[87]
A. Fioravanti, C. Bonnet, H. Ozbay, S.-I. Niculescu.
Stability windows and unstable root-loci for linear fractional time-delay systems, in: The 18th IFAC World Congress, Milan, Italy, September 2011, submitted.
[88]
M. Fliess, J. Lévine, P. Martin, P. Rouchon.
Flatness and defect of nonlinear systems: introductory theory and examples, in: Internat. J. Control, 1995, vol. 61, p. 1327–1361.
[89]
A. Kandri-Rody, V. Weispfenning.
Non-commutative Gröbner Bases in Algebras of Solvable Type, in: J. Symbolic Computation, 1990, vol. 9, p. 1–26.
[90]
H. Kitano.
Biological robustness, in: Nature, 2004, vol. 5, 826837 p.
[91]
H. Komatsu.
Relative cohomology of sheaves of solutions of differential equations, in: Hyperfunctions and Pseudo-Differential Equations, H. Komatsu (editor), Lecture Notes in Mathematics 287, Springer, 1971, p. 192–263.
[92]
R. Korogui, A. Fioravanti, J. Geromel.
On a rational transfer function-based approach to Im1 $H_\#8734 $ filtering design for time-delay linear systems, in: IEEE Transactions on Signal Processing, 2009, to appear.
[93]
R. Korogui, A. Fioravanti, J. Geromel.
Im1 $H_\#8734 $ output feedback for time-delay linear systems: a rational transfer function based approach, September 2011, submitted.
[94]
H. Kredel.
Solvable Polynomial Rings, Shaker, Aachen, 1993.
[95]
B. Malgrange.
Systèmes à coefficients constants, in: Séminaire Bourbaki 1962/63, N. Bourbaki (editor), Séminaire Bourbaki, Benjamin, 1963, p. 1–11.
[96]
F. Mazenc, M. Malisoff, J. Harmand.
Stabilization in a two-species chemostat with Monod growth functions, in: IEEE Transactions on Automatic Control, 2009, vol. 54, p. 855–861.
[97]
F. Mazenc, S.-I. Niculescu, O. Bernard.
Exponentially stable interval observers for linear systems with delay, 2010, Submitted.
[98]
H. Ozbay, C. Bonnet, H. Benjelloun, J. Clairambault.
Stability analysis of a distributed delay system modeling cell dynamics in leukemia, 2010, in revision.
[99]
H. Ozbay, C. Bonnet, A. Fioravanti.
PID controller design for fractional-order systems with time delays, 2008, in revision.
[100]
H. Pillai, S. Shankar.
A behavioural approach to control of distributed systems, in: SIAM J. Control Optim., 1998, vol. 37, p. 388–408.
[101]
J. W. Polderman, J. C. Willems.
Introduction to Mathematical Systems Theory. A Behavioral Approach, Texts in Applied Mathematics 26, Springer, 1998.
[102]
J.-F. Pommaret, A. Quadrat.
Algebraic analysis of linear multidimensional control systems, in: IMA J. Math. Control and Inform., 1999, vol. 16, p. 275–297.
[103]
J.-F. Pommaret, A. Quadrat.
Localization and parametrization of linear multidimensional control systems, in: Systems Control Lett., 1999, vol. 37, p. 247–260.
[104]
A. Quadrat, D. Robertz.
Computation of bases of free modules over the Weyl algebras, in: Journal of Symbolic Computation, 2007, vol. 42, p. 1113–1141.
[105]
A. Quadrat, D. Robertz.
Baer's extension problem for multidimensional linear systems, in: Proceedings of MTNS 2008, Blacksburg, Virginia (USA), 2008.
[106]
D. Quillen.
Projective modules over polynomial rings, in: Invent. Math., 1976, vol. 36, p. 167–171.
[107]
S. T. Stafford.
Module structure of Weyl algebras, in: J. London Math. Soc., 1978, vol. 18, p. 429–442.
[108]
A. A. Suslin.
Projective modules over polynomial rings are free, in: Soviet Math. Dokl., 1976, vol. 17, p. 1160–1164.

previous
next