Team defi

Overall Objectives
Scientific Foundations
Application Domains
New Results
Contracts and Grants with Industry
Other Grants and Activities

Section: Application Domains

Non destructive testing and parameter identification

One challenging problem in this vast area is the identification and imaging of defaults in anisotropic media. For instance this problem is of great importance in aeronautic constructions due to the growing use of composite materials. It also arises in applications linked with the evaluation of wood quality, like locating knots in timber in order to optimize timber-cutting in sawmills, or evaluating wood integrity before cutting trees. The anisotropy of the propagative media renders the analysis of diffracted waves more complex since one cannot only relies on the use of backscattered waves. Another difficulty comes from the fact that the micro-structure of the media is generally not well known a priori.

Our concern will be focused on the determination of qualitative information on the size of defaults and their physical properties rather than a complete imaging which for anisotropic media is in general impossible. For instance, in the case of homogeneous background, one can link the size of the inclusion and the index of refraction to the first eigenvalue of so-called interior transmission problem. These eigenvalues can be determined form the measured data and a rough localization of the default. Our goal is to extend this kind of idea to the cases where both the propagative media and the inclusion are anisotropic. The generalization to the case of cracks or screens has also to be investigated.

In the context of nuclear waste management many studies are conducted on the possibility of storing waste in a deep geological clay layer. To assess the reliability of such a storage without leakage it is necessary to have a precise knowledge of the porous media parameters (porosity, tortuosity, permeability, etc.). The large range of space and time scales involved in this process requires a high degree of precision as well as tight bounds on the uncertainties. Many physical experiments are conducted in situ which are designed for providing data for parameters identification. For example, the determination of the damaged zone (caused by excavation) around the repository area is of paramount importance since microcracks yield drastic changes in the permeability. Level set methods are a tool of choice for characterizing this damaged zone.


Logo Inria