Team ATHENA

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Other Grants and Activities
Dissemination
Bibliography

Section: Other Grants and Activities

National Initiatives

ANR ViMAGINE

Participants : Maureen Clerc, Rachid Deriche, Alexandre Gramfort [Parietal project-team] , Emmanuel Olivi, Théodore Papadopoulo, Anne-Charlotte Philippe.

Duration: July 2008 to July 2012

The partners of this project are Athena, the LENA (CHU Pitié-Salpétrière), and the Parietal project-team at INRIA Futurs and Neurospin-Saclay.

This project takes a new challenge on the non invasive exploration of the Human visual system in vivo. Beyond the basic mechanisms of visual perception – which have already been investigated at multiple scales and through a large variety of modalities – we are primarily interested in proposing and exploring innovative solutions to the investigation of dynamic neural activations and interactions at the systems level. Bridging the elements involved in this endeavour requires that we are capable of observing, modelling and predicting the interplay between the anatomical/functional architecture of the brain systems and some identified timing properties of neural processes. The overall framework in which this project will be conducted is a federation of partners who will be bringing complementary expertise to this multidisciplinary research. The collaborators include experts in (1) electromagnetic and magnetic resonance brain imaging methods, (2) computational models of neural systems and (3) the neuroscience of vision. A central asset of our group is the easy access to state-of-the-art imaging platforms (e.g. high-density MEG and EEG arrays; 3T and 7T MR scanners) that will ensure the acquisition of quality experimental data.

ANR CO-ADAPT

Participants : Maureen Clerc, Joan Fruitet, Emmanuel Olivi, Théodore Papadopoulo, Antoine Saillenfest, Nicolas Servant.

Duration: September 2009 to December 2013

The partners of this projects are the INSERM U821 laboratory of Bron, the "laboratoire de Neurologie de la cognition" UMR6155 CNRS of Marseille, The INRIA Lille Sequel project-team and the "Laboratoire d'Analyse Topologie et Probabilités UMR6632/CNRS of Université de Provence, Marseille.

Brain Computer Interfaces (BCI) provide a direct communication channel from the brain to a computer, bypassing traditional interfaces such as keyboard or mouse, and also providing a feedback to the user, through a sensory modality (visual, auditory or haptic). A target application of BCI is to restore mobility or autonomy to severely disabled patients, but more generally BCI opens up many new opportunities for better understanding the brain at work, for enhancing Human Computer Interaction, and for developing new therapies for mental illnesses.

In BCI, new modes of perception and interaction come into play, and a new user must learn to operate a BCI, as an infant learns to explore his/her sensorimotor system. Central to BCI operation are the notions of feedback and of reward, which we believe should hold a more central position in BCI research.

The goal of this project is to study the co-adaptation between a user and a BCI system in the course of training and operation. The quality of the interface will be judged according to several criteria (reliability, learning curve, error correction, bit rate). BCI will be considered under a joint perspective: the user's and the system's. From the user's brain activity, features must be extracted, and translated into commands to drive the BCI system. Feature extraction from data, and classification issues, are very active research topics in BCI. However, additional markers may also be extracted to modulate the system's behavior. It is for instance possible to monitor the brain's reaction to the BCI outcome, compared to the user's expectations. This type of information we refer to as meta-data because it is not directly related to the command, and it may be qualitative rather than quantitative. To our knowledge, there is so far no BCI system that integrates such meta-data from the user's brain. From the point of view of the system, it is important to devise adaptive learning strategies, because the brain activity is not stable in time. How to adapt the features in the course of BCI operation is a difficult and important topic of research. A Machine Learning method known as Reinforcement Learning (RL) may prove very relevant to address the above questions. Indeed, it is an adaptive learning method that explicitly incorporates a reward signal, which may be qualitative (hence allowing meta-data integration). The aim of CO-ADAPT is to propose new directions for BCI design, by modeling explicitly the co-adaptation taking place between the user and the system (web site http://coadapt.inria.fr ).

ANR NucleiPark

Participants : Rachid Deriche, Emmanuel Caruyer, Aurobrata Ghosh, Anne-Charlotte Philippe, Demian Wassermann.

Duration: September 2009 to December 2012

This project is about High field MR imaging (7T and 3T) of the brainstem, the deep nuclei and their connections in the parkinsonian syndromes with applications to prognosis, pathophysiology and improvement of therapeutic strategies. It involves three partners: The NeuroSpin team including C. Poupon and D. Le Bihan, the INRIA with our project as well as the VISAGES project-team and the UPMC (University Pierre and Marie Curie, Paris) including INSERM U678 (H. Benali) and the CENIR (S. Lehericy).

The goal of the project is to find new neuroimaging markers of deep brain nuclei in neurodegenerative diseases that can be used for the diagnosis of Parkinsonian syndromes at the early stage. In addition, the goal is the characterization of lesions of deep brain structures and the detection of biomarkers of neuronal lesions in PD that can be related to clinical signs, such as gait disorders. Biomarkers of Parkinsonian syndromes could be used to create a diagnostic tool of the pathology and to correlate the identified markers with clinical signs. We will perform tractography of small fibre bundles using our HARDI techniques and Diffusion markers (anisotropy, apparent diffusion coefficient, fibre density, curvature, average diameter) will be collected along the reconstructed bundles.

Complementary parts of these objectives directly related to the acquisitions protocols have been accepted within the framework of another proposal submitted by the same partners and accepted for grant for two years (2009 & 2010) by the France-Parkinson Association

ANR MULTIMODEL

Participants : Théodore Papadopoulo, Maureen Clerc.

Duration: December 2010 to March 2014

The general objectives of the MULTIMODEL project are twofold:

Specifically, during this 3-year project, the following questions will be dealt with:

We will operate at the level of population of cell, i.e. at a scale compatible with the resolution of neuroimaging tools (at the level of the mm). A novel model structure will be investigated. It will include astrocytes at this “mesoscopic” level and will operate in networks of connected regions. Moreover, models in physiological and pathological conditions will be compared, which will be a step towards a better understanding of mechanisms underlying epileptic condition.

The MULTIMODEL project stems from a conjoint INSERM-INRIA scientific initiative launched in December 2008 and ended in 2010. It involves 5 partners (Inserm U751 in Marseille, U678 in Paris, U836 in Grenoble, U642 in Rennes and INRIA Athena project-team).

ADT Immersive BCI

Participants : Théodore Papadopoulo, Maureen Clerc, Nicolas Servant, Joan Fruitet.

Duration: December 2009 to December 2011

The goal of this technical project, funded by INRIA for 2 years, is to facilitate the use of EEG within a new immersive environment at INRIA Sophia Antipolis Méditerranée, in order to make it possible to perform BCI or cognitive experiments within this environment. Using a BCI within an immersive environment will open up new possibilities for scientific research, both in BCI and in Virtual Reality. All development linked to this project will take place within an integrative software platform. This development will include electrode localization and real-time EEG processing with feedback to the user.

ADT MedInria-NT

Participants : Théodore Papadopoulo, Maureen Clerc, Rachid Deriche.

Duration: December 2010 to December 2012

The goal of this technical project, funded by INRIA for 2 years, is to introduce some tools developed at Odyssée /Athena into the MedINRIA platform. There are basically two such facilities:


previous
next

Logo Inria