Overall Objectives
Scientific Foundations
Application Domains
New Results
Other Grants and Activities

Section: Scientific Foundations


Electroencephalography (EEG) and Magnetoencephalography (MEG) are two non-invasive techniques for measuring (part of) the electrical activity of the brain. While EEG is an old technique (Hans Berger, a German neuropsychiatrist, measured the first human EEG in 1929), MEG is a rather new one: the first measures of the magnetic field generated by the electrophysiological activity of the brain have been done in 1968 at MIT by D. Cohen. Nowadays, EEG is relatively inexpensive and used routinely to detect and qualify neural activities (epilepsy detection and characterisation, neural disorder qualification, BCI, ...). MEG is, comparatively, much more expensive as SQUIDS only operate under very challenging conditions (at liquid helium temperature) and as a specially shielded room must be used to separate the signal of interest from the ambient noise. However, as it reveals a complementary vision to that of EEG and as it is less sensitive to the head structure, it also bears great hopes and an increasing number of MEG machines are being installed throughout the world. INRIA and Odyssée /Athena have participated in the acquisition of one such machine installed in the hospital "La Timone" in Marseille.

MEG and EEG can be measured simultaneously (M/EEG) and reveal complementary properties of the electrical fields. The two techniques have temporal resolutions of about the millisecond, which is the typical granularity of the measurable electrical phenomena that arise within the brain. This high temporal resolution makes MEG and EEG attractive for the functional study of the brain. The spatial resolution, on the contrary, is somewhat poor as only a few hundreds of simultaneous data points can be acquired simultaneously (about 300-400 for MEG and up to 256 for EEG). MEG and EEG are somewhat complementary with fMRI and SPECT in that those provide a very good spatial resolution but a rather poor temporal resolution (of the order of a second for fMRI and a minute for SPECT). Contrarily to fMRI, which “only” measures an haemodynamic response linked to the metabolic demand, MEG and EEG also measure a direct consequence of the electrical activity of the brain: it is acknowledged that the signals measured by MEG and EEG correspond to the variations of the post-synaptic potentials of the pyramidal cells in the cortex. Pyramidal neurons compose approximately 80% of the neurons of the cortex, and it requires at least about 50,000 active such neurons to generate some measurable signal.

While the few hundreds of temporal curves obtained using M/EEG have a clear clinical interest, they only provide partial information on the localisation of the sources of the activity (as the measurements are made on or outside of the head). Thus the practical use of M/EEG data raises various problems that are at the core of the Athena research in this topic:


Logo Inria