Bibliography
Major publications by the team in recent years
- [1]
- A. Basiri, A. Enge, J.-C. Faugère, N. Gürel.
The Arithmetic of Jacobian Groups of Superelliptic Cubics, in: Math. Comp., 2005, vol. 74, p. 389–410
http://hal.inria.fr/inria-00071967. - [2]
- J. Belding, R. Bröker, A. Enge, K. Lauter.
Computing Hilbert class polynomials, in: Algorithmic number theory, Berlin, Lecture Notes in Comput. Sci., Springer, 2008, vol. 5011, p. 282–295. - [3]
- A. Bostan, F. Morain, B. Salvy, É. Schost.
Fast algorithms for computing isogenies between elliptic curves, in: Math. Comp., 2008, vol. 77, no 263, p. 1755–1778
http://dx.doi.org/10.1090/S0025-5718-08-02066-8. - [4]
- A. Enge.
The complexity of class polynomial computation via floating point approximations, in: Mathematics of Computation, 2008, vol. 78, p. 1089-1107
http://hal.inria.fr/inria-00001040/PDF/class.pdf. - [5]
- A. Enge, P. Gaudry.
A general framework for subexponential discrete logarithm algorithms, in: Acta Arith., 2002, vol. CII, no 1, p. 83–103. - [6]
- A. Enge, P. Gaudry.
An L(1/3 +) algorithm for the discrete logarithm problem for low degree curves, in: Advances in Cryptology — Eurocrypt 2007, Berlin, M. Naor (editor), Lecture Notes in Comput. Sci., Springer-Verlag, 2007, vol. 4515, p. 379–393
http://hal.inria.fr/inria-00135324. - [7]
- A. Enge, F. Morain.
Comparing Invariants for Class Fields of Imaginary Quadratic Fields, in: Algorithmic Number Theory, C. Fieker, D. R. Kohel (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2002, vol. 2369, p. 252–266, 5th International Symposium, ANTS-V, Sydney, Australia, July 2002, Proceedings. - [8]
- A. Enge, R. Schertz.
Constructing elliptic curves over finite fields using double eta-quotients, in: Journal de Théorie des Nombres de Bordeaux, 2004, vol. 16, p. 555–568
http://jtnb.cedram.org/jtnb-bin/fitem?id=JTNB_2004__16_3_555_0. - [9]
- P. Mihăilescu, F. Morain, É. Schost.
Computing the eigenvalue in the Schoof-Elkies-Atkin algorithm using Abelian lifts, in: ISSAC '07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation, New York, NY, USA, ACM Press, 2007, p. 285–292
http://hal.inria.fr/inria-00130142. - [10]
- F. Morain.
La primalité en temps polynomial [d'après Adleman, Huang; Agrawal, Kayal, Saxena], in: Astérisque, 2004, no 294, p. Exp. No. 917, 205–230, Séminaire Bourbaki. Vol. 2002/2003. - [11]
- F. Morain.
Computing the cardinality of CM elliptic curves using torsion points, in: Journal de Théorie des Nombres de Bordeaux, 2007, vol. 19, no 3, p. 663–681
http://arxiv.org/ps/math.NT/0210173. - [12]
- F. Morain.
Implementing the asymptotically fast version of the elliptic curve primality proving algorithm, in: Math. Comp., 2007, vol. 76, p. 493–505.
Publications of the year
Articles in International Peer-Reviewed Journal
- [13]
- D. Augot, C. Gentner, A. Zeh.
A Berlekamp-Massey Approach for the Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes, in: IEEE Transactions on Information Theory, submitted 2009. - [14]
- R. Dupont.
Fast evaluation of modular functions using Newton iterations and the AGM, in: Math. Comp., 2009
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/preprints/Dupont_FastEvalMod.ps.gz, To appear. - [15]
- A. Enge.
Computing modular polynomials in quasi-linear time, in: Math. Comp., 2009, vol. 78, p. 1809-1024
http://hal.inria.fr/inria-00143084/PDF/modcomp.pdf. - [16]
- S. Galbraith, J. Pujolas, C. Ritzenthaler, B. Smith.
Distortion Maps for Genus 2 Curves, in: Journal of Mathematical Cryptology, 2009. - [17]
- B. Smith.
Isogenies and the discrete logarithm problem in Jacobians of genus 3 hyperelliptic curves, in: J. of Cryptology, 2009, vol. 22, no 4, p. 505-529.
International Peer-Reviewed Conference/Proceedings
- [18]
- F. Armknecht, D. Augot, L. Perret, A.-R. Sadeghi.
Algebraically Homomorphic Encryption from Evaluation Codes, in: EUROCRYPT 2010, 2009, submitted. - [19]
- L. De Feo, É. Schost.
Fast Arithmetics in Artin-Schreier towers, in: ISSAC 2009, 2009, p. 121-134. - [20]
- B. Smith.
Families of explicit isogenies of hyperelliptic Jacobians, in: Arithmétique, géométrie, cryptographie et théorie des codes: AGCT 12, 2009, submitted.
Other Publications
- [21]
- A. Enge, F. Morain.
Generalised Weber Functions. I, 2009
http://hal.inria.fr/inria-00385608/en/. - [22]
- The CADO Team.
CADO — Number field sieve: distribution, optimization, 2009
http://cado.gforge.inria.fr/.
References in notes
- [23]
- L. M. Adleman, J. DeMarrais, M.-D. Huang.
A Subexponential Algorithm for Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus Hyperelliptic Curves over Finite Fields, in: Algorithmic Number Theory, Berlin, L. M. Adleman, M.-D. Huang (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 1994, vol. 877, p. 28–40. - [24]
- P. S. L. M. Barreto, B. Lynn, M. Scott.
Constructing Elliptic Curves with Prescribed Embedding Degrees, in: Security in Communication Networks — Third International Conference, SCN 2002, Amalfi, Italy, September 2002, Berlin, S. Cimato, C. Galdi, G. Persiano (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2003, vol. 2576, p. 257–267. - [25]
- D. Bernstein.
Proving primality in essentially quartic expected time, in: Math. Comp., 2007, vol. 76, p. 389–403. - [26]
- A. Bostan, P. Gaudry, É. Schost.
Linear recurrences with polynomial coefficients and computation of the Cartier-Manin operator on hyperelliptic curves, in: Finite Fields and Applications, 7th International Conference, Fq7, G. Mullen, A. Poli, H. Stichtenoth (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2004, vol. 2948, p. 40–58
http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/cartierFq7.ps.gz. - [27]
- S. Contini.
Factoring integers with the self-initializing quadratic sieve, 1997
http://citeseer.ist.psu.edu/contini97factoring.html. - [28]
- J.-M. Couveignes.
Algebraic Groups and Discrete Logarithm, in: Public-Key Cryptography and Computational Number Theory, Berlin, K. Alster, J. Urbanowicz, H. C. Williams (editors), De Gruyter, 2001, p. 17–27. - [29]
- J.-M. Couveignes.
Quelques calculs en théorie des nombres, Université de Bordeaux I, July 1994, Thèse. - [30]
- J.-M. Couveignes.
Computing l -isogenies using the p -torsion, in: Algorithmic Number Theory, H. Cohen (editor), Lecture Notes in Comput. Sci., Springer Verlag, 1996, vol. 1122, p. 59–65, Second International Symposium, ANTS-II, Talence, France, May 1996, Proceedings. - [31]
- C. Diem.
An Index Calculus Algorithm for Plane Curves of Small Degree, in: Algorithmic Number Theory — ANTS-VII, Berlin, F. Hess, S. Pauli, M. Pohst (editors), Lecture Notes in Computer Science, Springer-Verlag, 2006, vol. 4076, p. 543–557. - [32]
- R. Dupont.
Moyenne arithmético-géométrique, suites de Borchardt et applications, École polytechnique, 2006, Ph. D. Thesis. - [33]
- R. Dupont, A. Enge, F. Morain.
Building curves with arbitrary small MOV degree over finite prime fields, in: J. of Cryptology, 2005, vol. 18, no 2, p. 79–89
http://www.math.u-bordeaux1.fr/~enge/vorabdrucke/mov.ps.gz. - [34]
- A. Enge.
A General Framework for Subexponential Discrete Logarithm Algorithms in Groups of Unknown Order, in: Finite Geometries, Dordrecht, A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel, J. A. Thas (editors), Developments in Mathematics, Kluwer Academic Publishers, 2001, vol. 3, p. 133–146. - [35]
- A. Enge.
Computing Discrete Logarithms in High-Genus Hyperelliptic Jacobians in Provably Subexponential Time, in: Math. Comp., 2002, vol. 71, no 238, p. 729–742. - [36]
- A. Enge, F. Morain.
Fast decomposition of polynomials with known Galois group, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, M. Fossorier, T. Høholdt, A. Poli (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2003, vol. 2643, p. 254–264, 15th International Symposium, AAECC-15, Toulouse, France, May 2003, Proceedings. - [37]
- C. Fontaine, F. Galand.
How Can Reed-Solomon Codes Improve Steganographic Schemes?, in: Information Hiding, T. Furon, F. Cayre, G. Doërr, P. Bas (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2007, no 4567, p. 130–144. - [38]
- J. Franke, T. Kleinjung, F. Morain, T. Wirth.
Proving the primality of very large numbers with fastECPP, in: Algorithmic Number Theory, D. Buell (editor), Lecture Notes in Comput. Sci., Springer-Verlag, 2004, vol. 3076, p. 194–207, 6th International Symposium, ANTS-VI, Burlington, VT, USA, June 2004, Proceedings. - [39]
- P. Gaudry, N. Gürel.
Counting points in medium characteristic using Kedlaya's algorithm, in: Experiment. Math., 2003, vol. 12, no 4, p. 395–402
http://www.expmath.org/expmath/volumes/12/12.html. - [40]
- P. Gaudry.
An Algorithm for Solving the Discrete Log Problem on Hyperelliptic Curves, in: Advances in Cryptology — EUROCRYPT 2000, Berlin, B. Preneel (editor), Lecture Notes in Comput. Sci., Springer-Verlag, 2000, vol. 1807, p. 19–34. - [41]
- P. Gaudry.
A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2, in: Advances in Cryptology – ASIACRYPT 2002, Y. Zheng (editor), Lecture Notes in Comput. Sci., Springer–Verlag, 2002, vol. 2501, p. 311–327. - [42]
- P. Gaudry, F. Morain.
Fast algorithms for computing the eigenvalue in the Schoof-Elkies-Atkin algorithm, in: ISSAC '06: Proceedings of the 2006 international symposium on Symbolic and algebraic computation, New York, NY, USA, ACM Press, 2006, p. 109–115
http://hal.inria.fr/inria-00001009. - [43]
- P. Gaudry, É. Schost.
Construction of Secure Random Curves of Genus 2 over Prime Fields, in: Advances in Cryptology – EUROCRYPT 2004, C. Cachin, J. Camenisch (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2004, vol. 3027, p. 239–256
http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/secureg2.ps.gz. - [44]
- P. Gaudry, É. Schost.
Modular equations for hyperelliptic curves, in: Math. Comp., 2005, vol. 74, p. 429–454
http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/eqmod2.ps.gz. - [45]
- P. Gaudry, E. Thomé, N. Thériault, C. Diem.
A double large prime variation for small genus hyperelliptic index calculus, in: Math. Comp., 2007, vol. 76, p. 475–492
http://www.loria.fr/~gaudry/publis/dbleLP.ps.gz. - [46]
- C. Gentry.
On Homomorphic Encryption over Circuits of Arbitrary Depth, in: 41st ACM Symposium on Theory of Computing (STOC 2009), 2009. - [47]
- J. E. Gower, S. S. Wagstaff, Jr..
Square form factorization, in: Math. Comp., 2008, vol. 77, p. 551–588. - [48]
- V. Guruswami, M. Sudan.
Improved decoding of Reed-Solomon and algebraic-geometry codes, in: IEEE Transactions on Information Theory, 1999, vol. 45, no 6, p. 1757–1767. - [49]
- F. Hess.
Computing Relations in Divisor Class Groups of Algebraic Curves over Finite Fields, 2004
http://www.math.tu-berlin.de/~hess/personal/dlog.ps.gz, Draft version. - [50]
- T. Høholdt, J. H. van Lint, R. Pellikaan.
Algebraic geometry codes, in: Handbook of Coding Theory, Elsevier, 1998, vol. I, p. 871–961. - [51]
- M. Jacobson.
Subexponential Class Group Computation in Quadratic Orders, Technische Universität Darmstadt, Darmstadt, Germany, 1999, Ph. D. Thesis. - [52]
- D. Jao, S. D. Miller, R. Venkatesan.
Do All Elliptic Curves of the Same Order Have the Same Difficulty of Discrete Log?, in: ASIACRYPT, Lecture Notes in Comput. Sci., 2005, p. 21-40. - [53]
- A. Joux.
A One Round Protocol for Tripartite Diffie–Hellman, in: Algorithmic Number Theory — ANTS-IV, Berlin, W. Bosma (editor), Lecture Notes in Comput. Sci., Springer-Verlag, 2000, vol. 1838, p. 385–393. - [54]
- H. W. Jr. Lenstra, C. Pomerance.
Primality testing with Gaussian periods, July 2005
http://www.math.dartmouth.edu/~carlp/PDF/complexity072805.pdf, Preliminary version. - [55]
- R. Lercier.
Computing isogenies in F2n , in: Algorithmic Number Theory, H. Cohen (editor), Lecture Notes in Comput. Sci., Springer Verlag, 1996, vol. 1122, p. 197–212, Second International Symposium, ANTS-II, Talence, France, May 1996, Proceedings. - [56]
- R. Lercier, F. Morain.
Computing isogenies between elliptic curves over Fpn using Couveignes's algorithm, in: Math. Comp., January 2000, vol. 69, no 229, p. 351–370. - [57]
- J. McKee.
Speeding Fermat's Factoring Method, in: Math. Comp., October 1999, vol. 68, no 228, p. 1729-1737. - [58]
- F. Morain.
Elliptic curves for primality proving, in: Encyclopedia of cryptography and security, H. C. A. van Tilborg (editor), Springer, 2005. - [59]
- M. A. Morrison, J. Brillhart.
A method of factoring and the factorization of F7 , in: Math. Comp., January 1975, vol. 29, no 129, p. 183-205. - [60]
- A. Rostovtsev, A. Stolbunov.
Public-key cryptosystem based on isogenies, 2006
http://eprint.iacr.org/, Cryptology ePrint Archive, Report 2006/145. - [61]
- R. Sakai, K. Ohgishi, M. Kasahara.
Cryptosystems based on pairing, 2000, SCIS 2000, The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan, January 26–28. - [62]
- A. Sutherland.
Computing Hilbert class polynomials with the CRT method, 2008
http://www.hyperelliptic.org/tanja/conf/ECC08/slides/Andrew-V-Sutherland.pdf, Talk at the 12th Workshop on Elliptic Curve Cryptography (ECC). - [63]
- E. Teske.
An elliptic trapdoor system, in: J. of Cryptology, 2006, vol. 19, no 1, p. 115–133. - [64]
- Y. Wu.
New List Decoding Algorithms for Reed-Solomon and BCH Codes, in: Information Theory, IEEE Transactions on, 2008, vol. 54, no 8, p. 3611–3630
http://dx.doi.org/10.1109/TIT.2008.926355.