Team Smash

Members
Overall Objectives
Scientific Foundations
Application Domains
New Results
Contracts and Grants with Industry
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
R. Abgrall, R. Saurel.
Discrete equations for physical and numerical compressible multiphase mixtures, in: Journal of Computational Physics, 2003, vol. 186, no 2, p. 361–396.
[2]
S. Gavrilyuk, R. Saurel.
Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, in: Journal of Computational Physics, 2002, vol. 175, p. 326–360.
[3]
M.-H. Lallemand, A. Chinnayya, O. Le Métayer.
Pressure relaxation procedures for multiphase compressible flows, in: Int. J. Numer. Meth. Fluids, 2005, vol. 49, p. 1–56.
[4]
M.-H. Lallemand, H. Steve, A. Dervieux.
Unstructured Multigridding by volume agglomeration - Current status, in: Computers & Fluids, 1992, vol. 21, no 3, p. 397–433.
[5]
O. Le Métayer, J. Massoni, R. Saurel.
Modelling evaporation fronts with reactive Riemann solvers, in: Journal of Computational Physics, 2005, vol. 205, p. 567–610.
[6]
R. Saurel, R. Abgrall.
A Multiphase Godunov method for compressible Multifluid and Multiphase flows, in: Journal of Computational Physics, 1999, vol. 150, p. 425–467.
[7]
R. Saurel, S. Gavrilyuk, François. Renaud.
A multiphase model with internal degree of freedom : Application to shock bubble interaction, in: Journal of Fluid Mechanics, 2003, vol. 495, p. 283-321.

Publications of the year

Articles in International Peer-Reviewed Journal

[8]
Nikolay V. Chemetov, F. Cipriano, S. Gavrilyuk.
Shallow water model for lakes with friction and penetration, in: Mathematical Methods in the Applied Sciences, 2009, accepted.
[9]
N. Favrie, S. Gavrilyuk, R. Saurel.
Solid-fluid diffuse interface model in cases of extreme deformations, in: Journal of Computational Physics, 2009, vol. 228, no 16, p. 6037–6077
http://dx.doi.org/10.1016/j.jcp.2009.05.015.
[10]
H. Gouin, S. Gavrilyuk.
Geometric evolution of the Reynolds stress tensor in three-dimensional turbulence, in: European Journal of Mechanics B/Fluids, 2009
http://hal.archives-ouvertes.fr/hal-00371444/en/, submitted.
[11]
O. Le Métayer, S. Gavrilyuk, S. Hank.
A numerical scheme for the Green–Nahgdi model, in: Journal of Computational Physics, 2009, accepted.
[12]
F. Petitpas, J. Massoni, R. Saurel, E. Lapebie, L. Munier.
Diffuse interface model for high speed cavitating underwater systems, in: Int. J. of Multiphase Flows, 2009, vol. 35, no 8, p. 747–759
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.03.011.
[13]
F. Petitpas, R. Saurel, E. Franquet, A. Chinnayya.
Modelling detonation waves in condensed energetic materials : Multiphase CJ conditions and multidimensional computations, in: Shock Waves, 2009, vol. 19, no 5, p. 377–401
http://dx.doi.org/10.1007/s00193-009-0217-7.
[14]
François. Renaud, R. Saurel, G. Jourdan, L. Houas.
Shock-bubbles interaction : a test configuration for two-fluid modelling, in: Chocs – Revue scientifique et technique de la Direction des applications militaires du CEA, Août 2009, no 37, p. 67–74.
[15]
R. Saurel, N. Favrie, F. Petitpas, M.-H. Lallemand, S. Gavrilyuk.
Modeling dynamic and irreversible powder compaction, in: Journal of Fluid Mechanics, 2009, submitted.
[16]
R. Saurel, F. Petitpas, R. A. Berry.
Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, in: Journal of Computational Physics, 2009, vol. 228, no 5, p. 1678–1712
http://dx.doi.org/10.1016/j.jcp.2008.11.002.

Articles in Non Peer-Reviewed Journal

[17]
R. A. Berry, R. Saurel, F. Petitpas.
Unified Two-Phase CFD Modeling of Boiling, Cavitation, and Bubble Collapse, in: Spring 2009 ASME Fluids Engineering Newletter, 2009, p. 10–11
http://files.asme.org/Divisions/FED/18057.pdf.

International Peer-Reviewed Conference/Proceedings

[18]
R. A. Berry, R. Saurel, F. Petitpas.
A simple and efficient diffuse interface method for compressible two–phase flows, in: International Conference on Advances on Mathematics, Computational Methods and Reactor Physics (M&C 2009), New York, USA, May 3–7 2009.
[19]
N. Favrie, S. Gavrilyuk, R. Saurel.
Diffuse solid–fluid interface model in cases of extreme deformations, in: Fluid & Elasticity 2009, Carry-le-Rouet, France, June 23–26 2009.
[20]
N. Favrie, S. Gavrilyuk, R. Saurel.
Un modèle d'interfaces diffuses pour l'interaction solide fluide en grandes déformations, in: Congrès Français de Mécanique XIX, Marseille, France, August 24 – 28 2009
http://194.199.99.21/programme/programmedetailleparsession.php?theme=S08, abstract in S08 : Phénomènes Couplés et Interfaciaux Fluides et Solides.
[21]
S. Gavrilyuk, H. Gouin.
Écoulements turbulents des eaux peu profondes, in: Congrès Français de Mécanique XIX, Marseille, France, August 24 – 28 2009
http://194.199.99.21/programme/programmedetailleparsession.php?theme=S12, abstract in S12 : Ondes et Écoulements à Surface Libre.
[22]
F. Petitpas, R. Saurel.
Modelling phase transition in cavitating systems, in: Second International Symposium on Computational Mechanics (ISCM II), Hong Kong – Macau, China, November 30 – December 3 2009.
[23]
J. Verhagen, J. Massoni, E. Daniel.
Multi-Model Formulation for Compressible Multiphysics and Multiphase Flows : An Efficient Coupling Algorithm, in: ASME Fluid Engineering Division Summer Meeting FEDSM2009-78034, Vail, Colorado – USA, August 2 – 6 2009.

Internal Reports

[24]
M.-H. Lallemand, R. Saurel.
Reduced models for multiphase flows : preliminary studies on compaction, INRIA, 2009, (in preparation).

References in notes

[25]
R. Abgrall, V. Perrier.
Asymptotic expansion of a multiscale numerical scheme for compressible multiphase flow, in: SIAM Multiscale Modeling and Simulation, 2006, vol. 5, no 1, p. 84–115.
[26]
M. Baer, J. Nunziato.
A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials., in: Int. J. of Multiphase Flows, 1986, vol. 12, p. 861–889.
[27]
A. Chinnayya, E. Daniel, R. Saurel.
Computation of detonation waves in heterogeneous energetic materials, in: Journal of Computational Physics, 2004, vol. 196, p. 490–538.
[28]
G. Dalmaso, P. LeFloch, F. Murat.
Definition and weak stability of non-conservative products., in: J. Math. Pures Appl., 1995, vol. 74, no 6, p. 483–548.
[29]
N. Favrie.
Un modèle d'interfaces diffuses pour l'interaction solide–fluide dans le cas des grandes déformations, Université de Provence, December 1rst, 2008, Thèse de l'Université.
[30]
R. Fedkiw, T. Aslam, B. Merriman, S. Osher.
A non oscillatory eulerian approach to interfaces in multimaterial flows (T he G host-F luid M ethod), in: Journal of Computational Physics, 1999, vol. 152, p. 457–492.
[31]
S. Gavrilyuk, N. Favrie, R. Saurel.
Modeling wave dynamics of compressible elastic materials, in: Journal of Computational Physics, 2008, vol. 227, p. 2941–2969
http://dx.doi.org/10.1016/j.jcp.2007.11.030.
[32]
S. Gavrilyuk, R. Saurel.
Estimation of the turbulent energy production across a shock wave, in: Journal of Fluid Mechanics, 2006, vol. 549, p. 131–139.
[33]
S. Gavrilyuk, R. Saurel.
Rankine-Hugoniot relations for shocks in heterogeneous mixtures, in: Journal of Fluid Mechanics, 2007, vol. 575, p. 495–507.
[34]
S. K. Godunov.
Elements of Continuum Mechanics, Izd-vo Nauka, Moscow, 1978, (in Russian).
[35]
S. K. Godunov, E.I. Romenskii.
Elements of Continuum Mechanics and Conservation Laws, Springer, 2003.
[36]
H. Guillard, M. Labois, M. Grandotto.
A five-equation dissipative model for two-phase flows, in: 5th International Symposium on Finite Volumes for Complex Applications. - Problems and Perspectives, HERMES, 2008.
[37]
H. Guillard, A. Murrone.
On the behavior of upwind schemes in the low Mach number limit : II. Godunov type schemes, in: Computers and Fluids, 2004, vol. 33, no 4, p. 655–675.
[38]
H. Guillard, C. Viozat.
On the behaviour of upwind schemes in the low Mach number limit, in: Computers and Fluids, 1999, vol. 28, no 1, p. 63–86.
[39]
T. Y. Hou, P. LeFloch.
Why non-conservative schemes converge to the wrong solution : Error analysis, in: Math. Comp., 1994, vol. 62, p. 497–530.
[40]
A. Kapila, R. Menikoff, J. Bdzil, S. Son, D. S. Stewart.
Two-phase modeling of DDT in granular materials : reduced equations., in: Physics of Fluids, 2001, vol. 13, no 10, p. 3002–3024.
[41]
S. Karni.
Multicomponent flow calculations by a consistent primitive algorithm, in: Journal of Computational Physics, 1994, vol. 112, p. 31–43.
[42]
S. Karni.
Hybrid multifluid algorithms, in: SIAM Journal of Scientific Computing, 1996, vol. 17, no 5, p. 1019–1039.
[43]
T. Kloczko.
Concept, architecture and performance study for a parallel code in CFD, in: 20th International Conference on Parallel Computational Fluid Dynamics, Lyon (France), May 19–22 2008.
[44]
M. Labois.
Modélisation des déséquilibres mécaniques dans les écoulements diphasiques : approches par relaxation et par modèle réduit, Université de Provence, October 31rst, 2008, Ph. D. Thesis.
[45]
G. H. Miller, P. Colella.
A higher-order Eulerian Godunov method for elastic-plastic flow in solids, in: Journal of Comput. Phys., February 10 2001, vol. 167, no 1, p. 131–176.
[46]
A. Murrone, H. Guillard.
A five equation reduced model for compressible two-phase flow computations, in: J. Comput. Phys., 2005, vol. 202, no 2, p. 664–698.
[47]
G. Perigaud, R. Saurel.
A compressible flow model with capillary effects, in: Journal of Computational Physics, 2005, vol. 209, p. 139–178.
[48]
F. Petitpas, E. Franquet, R. Saurel, O. Le Métayer.
A relaxation-projection method for compressible flows. Part II : Artificial heat exchanges for multiphase shocks, in: Journal of Computational Physics, 2007, vol. 225, no 2, p. 2214–2248.
[49]
J. N. Plohr, B. J. Plohr.
Linearized analysis of Richtmyer-Meshkov flow for elastic materials, in: Journal of Fluid Mechanics, 2005, vol. 537, p. 55–89.
[50]
R. Saurel, R. Abgrall.
A simple method for compressible multifluid flows, in: SIAM J. Sci. Comp., 1999, vol. 21, no 3, p. 1115–1145.
[51]
R. Saurel, F. Petitpas, Rémi. Abgrall.
Modeling phase transition in metastable liquids. Application to flashing and cavitating flows, in: Journal of Fluid Mechanics, 2008, vol. 607, p. 313–350
http://dx.doi.org/10.1017/S0022112008002061.
[52]
R. Saurel, O. Le Métayer, J. Massoni, S. Gavrilyuk.
Shock jump relations for multiphase mixtures with stiff mechanical relaxation, in: International Journal of Shock Waves, 2007, vol. 16, no 3, p. 209–232.
[53]
L. Schwartz.
Sur l'impossibilité de la multiplication des distributions, in: C.R.A.S. Paris, 1954, vol. I-239, p. 847–848.
[54]
D. Serre.
Sur le principe variationnel des équations de la mécanique des fluides compressibles, in: M2AN, 1993, vol. 27, no 6, p. 739–758.
[55]
H. Stewart, B. Wendroff.
Two-phase flow : Models and methods, in: Journal of Computational Physics, 1984, vol. 56, p. 363–409.
[56]
W. W. Wood, J. G. Kirkwood.
Diameter Effects in Condensed Explosives, in: Journal of Chem. Phys., 1954, vol. 22, p. 1920–1924.
[57]
A. B. Wood.
A Textbook of sound, Macmillan, New York, 1930.

previous
next