Section: New Results
First-order logic and bounded verification
Participant : Hubert Comon-Lundh.
In [48] , we try to reconcile two classical formalisations of security protocols, that are used in automated protocol verification. First-order logic resolution is a standard way to automate the verification of security protocols. However, it sometimes fails to produce security proofs for secure protocols because of the detection of false attacks. For the verification of a bounded number of sessions, false attacks can be avoided by introducing rigid variables. Unfortunately, this yields complicated resolution procedures. We show here that there is a simple translation of the security problem for a bounded number of sessions into first-order logic, that does not introduce false attacks. This is shown by translating clauses involving rigid variables into classical first-order clauses, while preserving satisfiability. We illustrate this approach by giving a complete and terminating strategy for a first-order logic fragment resulting from the above translation, that yields a decision procedure for a bounded number of sessions.