Team Parsifal

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
J. Despeyroux, P. Leleu.
Recursion over Objects of Functional Type, in: Special issue of MSCS on `Modalities in Type Theory', August 2001, vol. 11, no 4.
[2]
J. Despeyroux, F. Pfenning, C. Schürmann.
Primitive Recursion for Higher-Order Abstract Syntax, in: Theoretical Computer Science (TCS), September 2001, vol. 266, no 1-2, p. 1–57.
[3]
R. Dyckhoff, S. Lengrand.
Call-by-Value $ \lambda$ -calculus and LJQ, in: Journal of Logic and Computation, 2007, vol. 17, no 6, p. 1109–1134.
[4]
F. Lamarche, L. Straßburger.
Naming Proofs in Classical Propositional Logic, in: Typed Lambda Calculi and Applications, TLCA 2005, P. Urzyczyn (editor), LNCS, Springer-Verlag, 2005, vol. 3461, p. 246–261.
[5]
F. Lamarche, L. Straßburger.
From Proof Nets to the Free *-Autonomous Category, in: Logical Methods in Computer Science, 2006, vol. 2, no 4:3, p. 1–44
http://arxiv.org/pdf/cs.LO/0605054.
[6]
C. Liang, D. Miller.
Focusing and Polarization in Linear, Intuitionistic, and Classical Logics, in: Theoretical Computer Science, 2009, vol. 410, no 46, p. 4747–4768.
[7]
R. McDowell, D. Miller.
Reasoning with Higher-Order Abstract Syntax in a Logical Framework, in: ACM Trans. on Computational Logic, 2002, vol. 3, no 1, p. 80–136
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mcdowell01.pdf.
[8]
R. McDowell, D. Miller, C. Palamidessi.
Encoding transition systems in sequent calculus, in: Theoretical Computer Science, 2003, vol. 294, no 3, p. 411–437
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs97.pdf.
[9]
D. Miller, A. Tiu.
A proof theory for generic judgments, in: ACM Trans. on Computational Logic, October 2005, vol. 6, no 4, p. 749–783
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tocl-nabla.pdf.
[10]
L. Straßburger.
On the Axiomatisation of Boolean Categories with and without Medial, in: Theory and Applications of Categories, 2007, vol. 18, no 18, p. 536–601
http://arxiv.org/abs/cs.LO/0512086.

Publications of the year

Doctoral Dissertations and Habilitation Theses

[11]
O. Delande.
Symmetric Dialogue Games in the Proof Theory of Linear Logic, Ecole Polytechnique, October 2009
http://www.lix.polytechnique.fr/~delande/thesis.xhtml, Ph. D. Thesis.
[12]
V. Nigam.
Exploiting non-canonicity in the sequent calculus, Ecole Polytechnique, September 2009
http://www.lix.polytechnique.fr/~nigam/thesis/Vivek_Nigam_phd.pdf, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[13]
M. Gabbay, Stéphane. Lengrand.
The lambda-context Calculus, in: Information and Computation, 2009, vol. 207, no 12, p. 1369–1400.
[14]
C. Liang, D. Miller.
Focusing and Polarization in Linear, Intuitionistic, and Classical Logics, in: Theoretical Computer Science, 2009, vol. 410, no 46, p. 4747–4768
http://dx.doi.org/10.1016/j.tcs.2009.07.041.

International Peer-Reviewed Conference/Proceedings

[15]
D. Baelde.
On the proof theory of regular fixed points, in: TABLEAUX 09: Automated Reasoning with Analytic Tableaux and Related Methods, M. Giese, A. Waller (editors), LNAI, 2009, no 5607, p. 93–107
http://www.lix.polytechnique.fr/~dbaelde/productions/pool/baelde09tableaux.pdf.
[16]
K. Brünnler, L. Straßburger.
Modular Sequent Systems for Modal Logic, in: TABLEAUX 09: Automated Reasoning with Analytic Tableaux and Related Methods, M. Giese, A. Waller (editors), LNAI, Springer, 2009, no 5607, p. 152–166
http://www.iam.unibe.ch/~kai/Papers/2009mssml.pdf.
[17]
A. Ciabattoni, L. Straßburger, K. Terui.
Expanding the Realm of Systematic Proof Theory, in: Computer Science Logic, CSL'09, E. Grädel, R. Kahle (editors), Lecture Notes in Computer Science, Springer, 2009, vol. 5771, p. 163–178
http://dx.doi.org/10.1007/978-3-642-04027-6_14.
[18]
C. Liang, D. Miller.
A Unified Sequent Calculus for Focused Proofs, in: LICS: 24th Symp. on Logic in Computer Science, 2009, p. 355–364
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/liang09lics.pdf.
[19]
V. Nigam, D. Miller.
Algorithmic specifications in linear logic with subexponentials, in: ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP), 2009, p. 129–140
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ppdp09.pdf.
[20]
L. Straßburger.
A Kleene Theorem for Forest Languages, in: Language and Automata Theory and Applications, LATA'09, A. H. Dediu, A.-M. Ionescu, C. Martín-Vide (editors), LNCS, Springer, 2009, vol. 5457, p. 715–727
http://dx.doi.org/10.1007/978-3-642-00982-2_61.

Internal Reports

[21]
K. Chaudhuri, J. Despeyroux.
A Hybrid Linear Logic for Constrained Transition Systems with Applications to Molecular Biology, INRIA, 2009
http://hal.inria.fr/inria-00402942/en/, Research Report.

References in notes

[22]
S. Abramsky.
Computational Interpretations of Linear Logic, in: Theoretical Computer Science, 1993, vol. 111, p. 3–57.
[23]
J.-M. Andreoli.
Logic Programming with Focusing Proofs in Linear Logic, in: Journal of Logic and Computation, 1992, vol. 2, no 3, p. 297–347.
[24]
A. Avron.
The method of hypersequents in the proof theory of propositional non-classical logics, in: Logic: from foundations to applications: European logic colloquium, Clarendon Press, 1996, p. 1–32.
[25]
B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, S. Zdancewic.
Mechanized Metatheory for the Masses: The PoplMark Challenge, in: Theorem Proving in Higher Order Logics: 18th International Conference, LNCS, Springer-Verlag, 2005, p. 50–65.
[26]
M. Baaz, S. Hetzl.
On the non-confluence of cut-elimination, 2009, manuscript.
[27]
D. Baelde.
A linear approach to the proof-theory of least and greatest fixed points, Ecole Polytechnique, December 2008, Ph. D. Thesis.
[28]
D. Baelde.
On the Expressivity of Minimal Generic Quantification, in: LFMTP 2008: International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, A. Abel, C. Urban (editors), 2008, p. 16–31
http://hal.inria.fr/inria-00284186/en/.
[29]
N. D. Belnap, Jr..
Display Logic, in: Journal of Philosophical Logic, 1982, vol. 11, p. 375–417.
[30]
K. Brünnler.
Deep Sequent Systems for Modal Logic, in: Advances in Modal Logic, G. Governatori, I. Hodkinson, Y. Venema (editors), College Publications, 2006, vol. 6, p. 107–119
http://www.aiml.net/volumes/volume6/Bruennler.ps.
[31]
K. Chaudhuri, J. Despeyroux.
A Hybrid Linear Logic for Constrained Transition Systems, June 2009, Submitted.
[32]
K. Chaudhuri, D. Miller, A. Saurin.
Canonical Sequent Proofs via Multi-Focusing, in: Fifth IFIP International Conference on Theoretical Computer Science, G. Ausiello, J. Karhumäki, G. Mauri, L. Ong (editors), IFIP International Federation for Information Processing, Boston: Springer, September 2008, vol. 273, p. 383–396
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs08trackb.pdf.
[33]
A. Ciabattoni, N. Galatos, K. Terui.
From axioms to analytic rules in nonclassical logics, in: 23th Symp. on Logic in Computer Science, IEEE Computer Society Press, 2008, p. 229–240.
[34]
O. Delande, D. Miller, A. Saurin.
Proof and refutation in MALL as a game, May 2009
http://dx.doi.org/10.1016/j.apal.2009.07.017, Accepted to the Annals of Pure and Applied Logic.
[35]
J. Despeyroux, P. Leleu.
A modal $ \lambda$ -calcul with iteration and case constructs, in: proceedings of the annual Types for Proofs and Programs seminar, Springer-Verlag LNCS 1657, March 1998.
[36]
J. Despeyroux, F. Pfenning, C. Schürmann.
Primitive Recursion for Higher-Order Abstract Syntax, in: proceedings of the TLCA 97 Int. Conference on Typed Lambda Calculi and Applications, Nancy, France, April 2–4, P. de Groote, J. R. Hindley (editors), Springer-Verlag LNCS 1210, April 1997, p. 147–163.
[37]
A. Gacek.
A Framework for Specifying, Prototyping, and Reasoning about Computational Systems, University of Minnesota, 2009, Ph. D. Thesis.
[38]
A. Gacek, D. Miller, G. Nadathur.
Combining generic judgments with recursive definitions, in: 23th Symp. on Logic in Computer Science, F. Pfenning (editor), IEEE Computer Society Press, 2008, p. 33–44
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf.
[39]
A. Gacek, D. Miller, G. Nadathur.
Reasoning in Abella about Structural Operational Semantics Specifications, in: LFMTP 2008: International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, A. Abel, C. Urban (editors), 2008, p. 75–89
http://arxiv.org/pdf/0804.3914.pdf.
[40]
A. Gacek, D. Miller, G. Nadathur.
A two-level logic approach to reasoning about computations, November 2009
http://arxiv.org/pdf/0911.2993.pdf, Submitted 16 November.
[41]
A. Gacek, D. Miller, G. Nadathur.
Nominal abstraction, August 2009
http://arxiv.org/abs/0908.1390, Extended version of LICS 2008 paper. Submitted.
[42]
J.-Y. Girard.
Linear Logic, in: Theoretical Computer Science, 1987, vol. 50, p. 1–102.
[43]
J.-Y. Girard.
Proof Theory and Logical Complexity, Volume I, Studies in Proof Theory, Bibliopolis, edizioni di filosofia e scienze, 1987, vol. 1.
[44]
A. Guglielmi.
A System of Interaction and Structure, in: ACM Trans. on Computational Logic, 2007, vol. 8, no 1.
[45]
A. Guglielmi, L. Straßburger.
Non-commutativity and MELL in the Calculus of Structures, in: Computer Science Logic, CSL 2001, L. Fribourg (editor), LNCS, Springer-Verlag, 2001, vol. 2142, p. 54–68.
[46]
S. Hetzl.
On the form of witness terms, 2009, Submitted.
[47]
S. C. Kleene.
Representation of events in nerve nets and finite automata, in: Automata Studies, C. E. Shannon, J. McCarthy (editors), Princeton, N.J., 1956, p. 3–40.
[48]
F. Lamarche, L. Straßburger.
Constructing free Boolean categories, in: Proceedings of the Twentieth Annual IEEE Symposium on Logic in Computer Science (LICS'05), 2005, p. 209–218.
[49]
Stéphane. Lengrand, R. Dyckhoff, J. McKinna.
A sequent calculus for Type Theory, in: Proceedings of the 15th Annual Conference of the European Association for Computer Science Logic (CSL'06), Z. Esik (editor), Lecture Notes in Computer Science, Springer-Verlag, September 2006, vol. 4207, p. 441–455.
[50]
P. Martin-Löf.
Constructive Mathematics and Computer Programming, in: Sixth International Congress for Logic, Methodology, and Philosophy of Science, Amsterdam, North-Holland, 1982, p. 153–175.
[51]
R. McDowell, D. Miller.
Cut-elimination for a logic with definitions and induction, in: Theoretical Computer Science, 2000, vol. 232, p. 91–119.
[52]
R. McDowell, D. Miller.
A Logic for Reasoning with Higher-Order Abstract Syntax, in: Proceedings, Twelfth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, G. Winskel (editor), IEEE Computer Society Press, July 1997, p. 434–445.
[53]
D. Miller.
Forum: A Multiple-Conclusion Specification Logic, in: Theoretical Computer Science, September 1996, vol. 165, no 1, p. 201–232.
[54]
D. Miller, G. Nadathur, F. Pfenning, A. Scedrov.
Uniform Proofs as a Foundation for Logic Programming, in: Annals of Pure and Applied Logic, 1991, vol. 51, p. 125–157.
[55]
D. Miller, A. Tiu.
A Proof Theory for Generic Judgments: An extended abstract, in: Proc. 18th IEEE Symposium on Logic in Computer Science (LICS 2003), IEEE, June 2003, p. 118–127
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics03.pdf.
[56]
V. Nigam, D. Miller.
A framework for proof systems, March 2009, Extended version of IJCAR08 paper. Submitted.
[57]
F. Pfenning, C. Schürmann.
System Description: Twelf — A Meta-Logical Framework for Deductive Systems, in: 16th Conference on Automated Deduction, Trento, H. Ganzinger (editor), LNAI, Springer, 1999, no 1632, p. 202–206.
[58]
E. Pimentel, D. Miller.
On the specification of sequent systems, in: LPAR 2005: 12th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Lecture Notes in Artificial Intelligence, 2005, no 3835, p. 352–366
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lpar05.pdf.
[59]
A. M. Pitts.
Nominal Logic, A First Order Theory of Names and Binding, in: Information and Computation, 2003, vol. 186, no 2, p. 165–193.
[60]
E. P. Robinson.
Proof Nets for Classical Logic, in: Journal of Logic and Computation, 2003, vol. 13, p. 777–797.
[61]
A. Saurin.
Une étude logique du contrôle (appliquée à la programmation fonctionnelle et logique), Ecole Polytechnique, September 2008, Ph. D. Thesis.
[62]
L. Straßburger, F. Lamarche.
On Proof Nets for Multiplicative Linear Logic with Units, in: Computer Science Logic, CSL 2004, J. Marcinkowski, A. Tarlecki (editors), LNCS, Springer-Verlag, 2004, vol. 3210, p. 145–159.
[63]
L. Straßburger.
What could a Boolean category be?, in: Classical Logic and Computation 2006 (Satellite Workshop of ICALP'06), S. van Bakel (editor), 2006
http://www.lix.polytechnique.fr/~lutz/papers/medial-kurz.pdf.
[64]
J. W. Thatcher, J. B. Wright.
Generalized Finite Automata Theory with an Application to a Decision Problem of Second-Order Logic, in: Math. Systems Theory, 1968, vol. 2, p. 57–81.
[65]
A. Tiu, D. Miller.
Proof Search Specifications of Bisimulation and Modal Logics for the $ \pi$ -calculus, February 2009
http://arxiv.org/abs/0805.2785, Accepted by ACM ToCL.
[66]
A. Tiu.
A Logic for Reasoning about Generic Judgments, in: Int. Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP'06), A. Momigliano, B. Pientka (editors), 2006.
[67]
A. Tiu.
On the Role of Names in Reasoning about $ \lambda$ -tree Syntax Specifications, in: LFMTP 2008: International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, A. Abel, C. Urban (editors), 2008, p. 32–46.

previous
next