Bibliography
Major publications by the team in recent years
- [1]
- M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux, S. Piperno.
Dynamic non-planar crack rupture by a finite volume method, in: Geophys. J. Int., 2007, vol. 171, p. 271-285. - [2]
- M. Bernacki, L. Fezoui, S. Lanteri, S. Piperno.
Parallel unstructured mesh solvers for heterogeneous wave propagation problems, in: Appl. Math. Model., 2006, vol. 30, no 8, p. 744–763. - [3]
- A. Catella, V. Dolean, S. Lanteri.
An unconditionally stable discontinuous Galerkin method for solving the 2D time-domain Maxwell equations on unstructured triangular meshes, in: IEEE. Trans. Magn., 2008, vol. 44, no 6, p. 1250–1253. - [4]
- V. Dolean, H. Fol, S. Lanteri, R. Perrussel.
Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods, in: J. Comp. Appl. Math., 2008, vol. 218, no 2, p. 435-445. - [5]
- V. Dolean, M. Gander.
Why classical Schwarz methods applied to hyperbolic systems can converge even without overlap, in: 17th International Conference on Domain Decomposition Methods in Science and Engineering, St. Wolfgang-Strobl, Austria, Lecture Notes in Computational Science and Engineering (LNCSE), Springer Verlag, 2008, vol. 60, p. 467–475. - [6]
- V. Dolean, S. Lanteri, R. Perrussel.
A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, in: J. Comput. Phys., 2007, vol. 227, no 3, p. 2044–2072. - [7]
- V. Dolean, S. Lanteri, R. Perrussel.
Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method, in: IEEE. Trans. Magn., 2008, vol. 44, no 6, p. 954–957. - [8]
- L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.
Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, p. 1149–1176. - [9]
- S. Piperno, M. Remaki, L. Fezoui.
A nondiffusive finite volume scheme for the three-dimensional Maxwell's equations on unstructured meshes, in: SIAM J. Num. Anal., 2002, vol. 39, no 6, p. 2089–2108. - [10]
- G. Scarella, O. Clatz, S. Lanteri, G. Beaume, S. Oudot, J.-P. Pons, S. Piperno, P. Joly, J. Wiart.
Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones, in: Comptes Rendus Physique, 2006, vol. 7, no 5, p. 501–508.
Publications of the year
Doctoral Dissertations and Habilitation Theses
- [11]
- V. Dolean.
Domain decomposition and high order methods for the solution of partial differential systems of equations. Application to fluid dynamics and electromagnetism, Université de Nice-Sophia Antipolis, july 2009
http://tel.archives-ouvertes.fr/tel-00413574, Habilitation thesis.
Articles in International Peer-Reviewed Journal
- [12]
- M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.
3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, p. 541–560. - [13]
- S. Delcourte, L. Fezoui, N. Glinsky-Olivier.
A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, p. 70–89. - [14]
- V. Dolean, M. Gander, L. Gerardo-Giorda.
Optimized Schwarz methods for Maxwell equations, in: SIAM J. Scient. Comp., 2009, vol. 31, no 3, p. 2193–2213. - [15]
- H. Fahs.
Development of a hp -like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, p. 193–216. - [16]
- H. Fahs.
High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, p. 275–300.
Invited Conferences
- [17]
- V. Dolean, M. El Bouajaji, S. Lanteri, R. Perrussel.
Solution of the frequency domain Maxwell equations by a high order non-conforming discontinuous Galerkin method, in: 17th Conference on the Computation of Electromagnetic Fields (Compumag 2009), Florianopolis, Brazil, november 2009, p. 241–242. - [18]
- S. Lanteri.
Domain decomposition methods for electromagnetic wave propagation problems involving heterogeneous media and complex domains, in: 19th International Conference on Domain Decomposition Methods (DD19), Zhangjiajie, China, august 2009.
International Peer-Reviewed Conference/Proceedings
- [19]
- S. Delcourte, L. Fezoui, N. Glinsky-Olivier.
Analysis of a discontinuous Galerkin method for 3D elastic wave propagation, in: International Conference on Spectral and High Order Methods (ICOSAHOM 09), Trondheim, Norway, june 2009, p. 249–250. - [20]
- S. Delcourte, N. Glinsky-Olivier, L. Fezoui.
Analysis of a discontinuous Galerkin method for 3D elastic wave propagation, in: 9th International Conference on Mathematical and Numerical Aspects of Waves Propagation (Waves 2009), Pau, France, june 2009. - [21]
- V. Dolean, H. Fahs, L. Fezoui, S. Lanteri.
A hybrid explicit-implicit discontinuous Galerkin method for time domain electromagnetics, in: International Conference on Spectral and High Order Methods (ICOSAHOM 09), Trondheim, Norway, june 2009, p. 192–193. - [22]
- V. Dolean, H. Fahs, L. Fezoui, S. Lanteri, F. Rapetti.
Recent developments on a DGTD method for time domain electromagnetics, in: 17th Conference on the Computation of Electromagnetic Fields (Compumag 2009), Florianopolis, Brazil, november 2009, p. 338–339. - [23]
- V. Dolean, M. El Bouajaji, M. Gander, S. Lanteri.
Optimized Schwarz methods for Maxwell's equations with non-zero electric conductivity, in: 19th International Conference on Domain Decomposition Methods (DD19), Zhangjiajie, China, august 2009. - [24]
- A.-M. Duval, E. Bertrand, M. Pernoud, A. Saad, C. Gourdin, P. Langlaude, J. Regnier, N. Glinsky-Olivier, J.-F. Semblat.
Sismological evidence of topographic site effects in 1909 Provence earthquake damage distribution, in: Provence'2009 - Seismic Risk in Moderate Seismicity Area : from Hazard to Vulnerability, Aix en Provence, France, july 2009. - [25]
- A.-M. Duval, E. Bertrand, J. Regnier, E. Grasso, J. Gance, N. Glinsky-Olivier, J.-F. Semblat.
Experimental and numerical approaches of topographic site effects claimed to be responsible for 1909 Provence eartquake damage distribution, in: 2009 AGU Fall Meeting, San Francisco, California, USA, december 2009. - [26]
- M. El Bouajaji.
Méthodes Galerkin discontinues d'ordre élevé en maillages simplexes pour la résolution numérique des équations de Maxwell en régime harmonique, in: 4ème Biennale Française de Mathématiques Appliquées (SMAI 2009), La Colle sur Loup, France, may 2009. - [27]
- V. Etienne, J. Virieux, N. Glinsky-Olivier, S. Operto.
Seismic modelling with Discontinuous Galerkin finite element method : application to large-scale 3D elastic media, in: 71th EAGE Conference & Exhibition, Amsterdam, The Netherlands, june 2009. - [28]
- N. Glinsky-Olivier, S. Delcourte, L. Fezoui.
A Discontinuous Galerkin method for 3D elastic wave propagation : analysis and applications, in: 9th International Conference on Theoretical and Computational Acoustics (ICTCA 2009), Dresden, Germany, september 2009. - [29]
- E. Mathias, V. Cave, S. Lanteri, F. Baude.
Grid-enabling SPMD applications through hierarchical partitioning and a component-based runtime, in: 15th International European Conference on Parallel and Distributed Computing (Euro-Par 2009), Delft, Netherlands, LNCS, Springer, august 2009, vol. 5704, p. 691–703. - [30]
- S. M. Pong, N. Glinsky-Olivier, S. Lanteri.
A fourth order discontinuous Galerkin scheme for the elastodynamic equations, in: Numerical Methods and North-South Cooperation (NumCoop09), Yaoundé, Cameroon, march 2009.
Internal Reports
- [31]
- C. Durochat, S. Lanteri.
Méthode Galerkin discontinue en maillage hybride triangulaire/quadrangulaire pour la résolution numérique des équations de Maxwell instationnaires, INRIA, 2009, no RR-, Technical report.
References in notes
- [32]
- B. Cockburn, G. Karniadakis, C. Shu (editors)
Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11. - [33]
- B. Cockburn, C. Shu (editors)
Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23. - [34]
- C. Dawson (editor)
Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195. - [35]
- K. Aki, P. Richards.
Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002. - [36]
- P. Amestoy, I. Duff, J.-Y. L'Excellent.
Multifrontal parallel distributed symmetric and unsymmetric solvers, in: Comput. Meth. App. Mech. Engng., 2000, vol. 184, p. 501–520. - [37]
- J. Hesthaven, T. Warburton.
Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007. - [38]
- P. Houston, I. Perugia, A. Schneebeli, D. Schotzau.
Interior penalty method for the indefinite time-harmonic Maxwell equations, in: Numer. Math., 2005, vol. 100, p. 485–518. - [39]
- J. Jackson.
Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998. - [40]
- G. Jacobs, J. Hesthaven.
High-order nodal discontinuous Galerkin Particle-in-Cell methods on unstructured grids, in: J. Comput. Phys., 2005, vol. 121, p. 96–121. - [41]
- S. Piperno.
Symplectic local time stepping in non-dissipative DGTD methods applied to wave propagation problem, in: ESAIM: Math. Model. Num. Anal., 2006, vol. 40, no 5, p. 815–841. - [42]
- A. Quarteroni, A. Valli.
Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 1999. - [43]
- B. Smith, P. Bjorstad, W. Gropp.
Domain decomposition and parallel multilevel methods for elliptic partial differential equations, Cambridge University Press, 1996. - [44]
- P. Solin, K. Segeth, I. Dolezel.
Higher-order finite element methods, Studies in Advanced Mathematics, Chapman & Hall/CRC Press, 2003. - [45]
- A. Taflove, S. Hagness.
Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005. - [46]
- A. Toselli, O. Widlund.
Domain Decomposition Methods. Algorithms and theory, Springer Series in Computational Mathematics, Springer Verlag, 2004, vol. 34. - [47]
- J. Verwer.
Convergence and component splitting for the Crank-Nicolson/Leap-Frog integration method, Modelling, Analysis and Simulation, CWI, 2009, no MAS-E0902
https://repos.cwi.nl/public_repository/zoekinoaienora/fullrecord.php?publnr=13678, Technical report. - [48]
- J. Virieux.
P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, p. 889–901. - [49]
- T. Warburton, M. Embree.
On the role of the penalty in the local Discontinuous Galerkin method for Maxwell's eigenvalue problem, in: Comput. Meth. App. Mech. Engng., 2006, vol. 195, p. 3205–3223. - [50]
- K. Yee.
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, p. 302–307.