Team nachos

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Contracts and Grants with Industry
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux, S. Piperno.
Dynamic non-planar crack rupture by a finite volume method, in: Geophys. J. Int., 2007, vol. 171, p. 271-285.
[2]
M. Bernacki, L. Fezoui, S. Lanteri, S. Piperno.
Parallel unstructured mesh solvers for heterogeneous wave propagation problems, in: Appl. Math. Model., 2006, vol. 30, no 8, p. 744–763.
[3]
A. Catella, V. Dolean, S. Lanteri.
An unconditionally stable discontinuous Galerkin method for solving the 2D time-domain Maxwell equations on unstructured triangular meshes, in: IEEE. Trans. Magn., 2008, vol. 44, no 6, p. 1250–1253.
[4]
V. Dolean, H. Fol, S. Lanteri, R. Perrussel.
Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods, in: J. Comp. Appl. Math., 2008, vol. 218, no 2, p. 435-445.
[5]
V. Dolean, M. Gander.
Why classical Schwarz methods applied to hyperbolic systems can converge even without overlap, in: 17th International Conference on Domain Decomposition Methods in Science and Engineering, St. Wolfgang-Strobl, Austria, Lecture Notes in Computational Science and Engineering (LNCSE), Springer Verlag, 2008, vol. 60, p. 467–475.
[6]
V. Dolean, S. Lanteri, R. Perrussel.
A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, in: J. Comput. Phys., 2007, vol. 227, no 3, p. 2044–2072.
[7]
V. Dolean, S. Lanteri, R. Perrussel.
Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method, in: IEEE. Trans. Magn., 2008, vol. 44, no 6, p. 954–957.
[8]
L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.
Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, p. 1149–1176.
[9]
S. Piperno, M. Remaki, L. Fezoui.
A nondiffusive finite volume scheme for the three-dimensional Maxwell's equations on unstructured meshes, in: SIAM J. Num. Anal., 2002, vol. 39, no 6, p. 2089–2108.
[10]
G. Scarella, O. Clatz, S. Lanteri, G. Beaume, S. Oudot, J.-P. Pons, S. Piperno, P. Joly, J. Wiart.
Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones, in: Comptes Rendus Physique, 2006, vol. 7, no 5, p. 501–508.

Publications of the year

Doctoral Dissertations and Habilitation Theses

[11]
V. Dolean.
Domain decomposition and high order methods for the solution of partial differential systems of equations. Application to fluid dynamics and electromagnetism, Université de Nice-Sophia Antipolis, july 2009
http://tel.archives-ouvertes.fr/tel-00413574, Habilitation thesis.

Articles in International Peer-Reviewed Journal

[12]
M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.
3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, p. 541–560.
[13]
S. Delcourte, L. Fezoui, N. Glinsky-Olivier.
A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, p. 70–89.
[14]
V. Dolean, M. Gander, L. Gerardo-Giorda.
Optimized Schwarz methods for Maxwell equations, in: SIAM J. Scient. Comp., 2009, vol. 31, no 3, p. 2193–2213.
[15]
H. Fahs.
Development of a hp -like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, p. 193–216.
[16]
H. Fahs.
High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, p. 275–300.

Invited Conferences

[17]
V. Dolean, M. El Bouajaji, S. Lanteri, R. Perrussel.
Solution of the frequency domain Maxwell equations by a high order non-conforming discontinuous Galerkin method, in: 17th Conference on the Computation of Electromagnetic Fields (Compumag 2009), Florianopolis, Brazil, november 2009, p. 241–242.
[18]
S. Lanteri.
Domain decomposition methods for electromagnetic wave propagation problems involving heterogeneous media and complex domains, in: 19th International Conference on Domain Decomposition Methods (DD19), Zhangjiajie, China, august 2009.

International Peer-Reviewed Conference/Proceedings

[19]
S. Delcourte, L. Fezoui, N. Glinsky-Olivier.
Analysis of a discontinuous Galerkin method for 3D elastic wave propagation, in: International Conference on Spectral and High Order Methods (ICOSAHOM 09), Trondheim, Norway, june 2009, p. 249–250.
[20]
S. Delcourte, N. Glinsky-Olivier, L. Fezoui.
Analysis of a discontinuous Galerkin method for 3D elastic wave propagation, in: 9th International Conference on Mathematical and Numerical Aspects of Waves Propagation (Waves 2009), Pau, France, june 2009.
[21]
V. Dolean, H. Fahs, L. Fezoui, S. Lanteri.
A hybrid explicit-implicit discontinuous Galerkin method for time domain electromagnetics, in: International Conference on Spectral and High Order Methods (ICOSAHOM 09), Trondheim, Norway, june 2009, p. 192–193.
[22]
V. Dolean, H. Fahs, L. Fezoui, S. Lanteri, F. Rapetti.
Recent developments on a DGTD method for time domain electromagnetics, in: 17th Conference on the Computation of Electromagnetic Fields (Compumag 2009), Florianopolis, Brazil, november 2009, p. 338–339.
[23]
V. Dolean, M. El Bouajaji, M. Gander, S. Lanteri.
Optimized Schwarz methods for Maxwell's equations with non-zero electric conductivity, in: 19th International Conference on Domain Decomposition Methods (DD19), Zhangjiajie, China, august 2009.
[24]
A.-M. Duval, E. Bertrand, M. Pernoud, A. Saad, C. Gourdin, P. Langlaude, J. Regnier, N. Glinsky-Olivier, J.-F. Semblat.
Sismological evidence of topographic site effects in 1909 Provence earthquake damage distribution, in: Provence'2009 - Seismic Risk in Moderate Seismicity Area : from Hazard to Vulnerability, Aix en Provence, France, july 2009.
[25]
A.-M. Duval, E. Bertrand, J. Regnier, E. Grasso, J. Gance, N. Glinsky-Olivier, J.-F. Semblat.
Experimental and numerical approaches of topographic site effects claimed to be responsible for 1909 Provence eartquake damage distribution, in: 2009 AGU Fall Meeting, San Francisco, California, USA, december 2009.
[26]
M. El Bouajaji.
Méthodes Galerkin discontinues d'ordre élevé en maillages simplexes pour la résolution numérique des équations de Maxwell en régime harmonique, in: 4ème Biennale Française de Mathématiques Appliquées (SMAI 2009), La Colle sur Loup, France, may 2009.
[27]
V. Etienne, J. Virieux, N. Glinsky-Olivier, S. Operto.
Seismic modelling with Discontinuous Galerkin finite element method : application to large-scale 3D elastic media, in: 71th EAGE Conference & Exhibition, Amsterdam, The Netherlands, june 2009.
[28]
N. Glinsky-Olivier, S. Delcourte, L. Fezoui.
A Discontinuous Galerkin method for 3D elastic wave propagation : analysis and applications, in: 9th International Conference on Theoretical and Computational Acoustics (ICTCA 2009), Dresden, Germany, september 2009.
[29]
E. Mathias, V. Cave, S. Lanteri, F. Baude.
Grid-enabling SPMD applications through hierarchical partitioning and a component-based runtime, in: 15th International European Conference on Parallel and Distributed Computing (Euro-Par 2009), Delft, Netherlands, LNCS, Springer, august 2009, vol. 5704, p. 691–703.
[30]
S. M. Pong, N. Glinsky-Olivier, S. Lanteri.
A fourth order discontinuous Galerkin scheme for the elastodynamic equations, in: Numerical Methods and North-South Cooperation (NumCoop09), Yaoundé, Cameroon, march 2009.

Internal Reports

[31]
C. Durochat, S. Lanteri.
Méthode Galerkin discontinue en maillage hybride triangulaire/quadrangulaire pour la résolution numérique des équations de Maxwell instationnaires, INRIA, 2009, no RR-, Technical report.

References in notes

[32]
B. Cockburn, G. Karniadakis, C. Shu (editors)
Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
[33]
B. Cockburn, C. Shu (editors)
Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
[34]
C. Dawson (editor)
Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
[35]
K. Aki, P. Richards.
Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
[36]
P. Amestoy, I. Duff, J.-Y. L'Excellent.
Multifrontal parallel distributed symmetric and unsymmetric solvers, in: Comput. Meth. App. Mech. Engng., 2000, vol. 184, p. 501–520.
[37]
J. Hesthaven, T. Warburton.
Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
[38]
P. Houston, I. Perugia, A. Schneebeli, D. Schotzau.
Interior penalty method for the indefinite time-harmonic Maxwell equations, in: Numer. Math., 2005, vol. 100, p. 485–518.
[39]
J. Jackson.
Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
[40]
G. Jacobs, J. Hesthaven.
High-order nodal discontinuous Galerkin Particle-in-Cell methods on unstructured grids, in: J. Comput. Phys., 2005, vol. 121, p. 96–121.
[41]
S. Piperno.
Symplectic local time stepping in non-dissipative DGTD methods applied to wave propagation problem, in: ESAIM: Math. Model. Num. Anal., 2006, vol. 40, no 5, p. 815–841.
[42]
A. Quarteroni, A. Valli.
Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 1999.
[43]
B. Smith, P. Bjorstad, W. Gropp.
Domain decomposition and parallel multilevel methods for elliptic partial differential equations, Cambridge University Press, 1996.
[44]
P. Solin, K. Segeth, I. Dolezel.
Higher-order finite element methods, Studies in Advanced Mathematics, Chapman & Hall/CRC Press, 2003.
[45]
A. Taflove, S. Hagness.
Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
[46]
A. Toselli, O. Widlund.
Domain Decomposition Methods. Algorithms and theory, Springer Series in Computational Mathematics, Springer Verlag, 2004, vol. 34.
[47]
J. Verwer.
Convergence and component splitting for the Crank-Nicolson/Leap-Frog integration method, Modelling, Analysis and Simulation, CWI, 2009, no MAS-E0902
https://repos.cwi.nl/public_repository/zoekinoaienora/fullrecord.php?publnr=13678, Technical report.
[48]
J. Virieux.
P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, p. 889–901.
[49]
T. Warburton, M. Embree.
On the role of the penalty in the local Discontinuous Galerkin method for Maxwell's eigenvalue problem, in: Comput. Meth. App. Mech. Engng., 2006, vol. 195, p. 3205–3223.
[50]
K. Yee.
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, p. 302–307.

previous
next