Team mistis

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Contracts and Grants with Industry
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
C. Amblard, S. Girard.
Estimation procedures for a semiparametric family of bivariate copulas, in: Journal of Computational and Graphical Statistics, 2005, vol. 14, no 2, p. 1–15.
[2]
J. Blanchet, F. Forbes.
Triplet Markov fields for the supervised classification of complex structure data, in: IEEE trans. on Pattern Analyis and Machine Intelligence, 2008, vol. 30(6), p. 1055–1067.
[3]
C. Bouveyron, S. Girard, C. Schmid.
High dimensional data clustering, in: Computational Statistics and Data Analysis, 2007, vol. 52, p. 502–519.
[4]
C. Bouveyron, S. Girard, C. Schmid.
High dimensional discriminant analysis, in: Communication in Statistics - Theory and Methods, 2007, vol. 36, no 14.
[5]
G. Celeux, S. Chrétien, F. Forbes, A. Mkhadri.
A Component-wise EM Algorithm for Mixtures, in: Journal of Computational and Graphical Statistics, 2001, vol. 10, p. 699–712.
[6]
G. Celeux, F. Forbes, N. Peyrard.
EM procedures using mean field-like approximations for Markov model-based image segmentation, in: Pattern Recognition, 2003, vol. 36, no 1, p. 131-144.
[7]
F. Forbes, G. Fort.
Combining Monte Carlo and Mean field like methods for inference in hidden Markov Random Fields, in: IEEE trans. PAMI, 2007, vol. 16, no 3, p. 824-837.
[8]
F. Forbes, N. Peyrard.
Hidden Markov Random Field Model Selection Criteria based on Mean Field-like Approximations, in: in IEEE trans. PAMI, August 2003, vol. 25(9), p. 1089–1101.
[9]
L. Gardes, S. Girard.
A moving window approach for nonparametric estimation of the conditional tail index, in: Journal of Multivariate Analysis, 2008, vol. 99, p. 2368–2388.
[10]
S. Girard.
A Hill type estimate of the Weibull tail-coefficient, in: Communication in Statistics - Theory and Methods, 2004, vol. 33, no 2, p. 205–234.

Publications of the year

Articles in International Peer-Reviewed Journal

[11]
C. Amblard, S. Girard.
A new extension of bivariate FGM copulas, in: Metrika, 2009, vol. 70, p. 1-17
http://hal.inria.fr/inria-00134433/en/.
[12]
C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes, S. Girard.
Retrieval of Mars surface physical properties from Omega hyperspectral images using Regularized Sliced Inverse Regression, in: Journal of Geophysical Research - Planets, 2009, vol. 114
http://hal.archives-ouvertes.fr/hal-00383143/en/, E06005.
[13]
C. Bernard-Michel, L. Gardes, S. Girard.
Gaussian Regularized Sliced Inverse Regression, in: Statistics and Computing, 2009, vol. 19, p. 85-98
http://hal.inria.fr/inria-00180458/en/.
[14]
C. Bouveyron, S. Girard.
Robust supervised classification with mixture models: Learning from data with uncertain labels, in: Pattern Recognition, 2009, vol. 42, no 11, p. 2649-2658
http://hal.archives-ouvertes.fr/hal-00325263/en/.
[15]
B. Durand, M.-J. Martinez, D. Calavas, C. Ducrot.
Comparison of strategies for substantiating freedom from scrapie in a sheep flock, in: BMC Veterinary Research, 2009, no 5:16.
[16]
M. Fauvel, J. Atli Benediktsson, J. Chanussot.
Kernel principal component analysis for the classification of hyperspectral remote-sensing data over urban areas, in: EURASIP Journal on Advances in Signal Processing, 2009, Vol. 2009 p
http://hal.archives-ouvertes.fr/hal-00372296/en/.
[17]
S. Girard, P. Jacob.
Frontier estimation with local polynomials and high power-transformed data, in: Journal of Multivariate Analysis, 2009, vol. 100, p. 1691-1705
http://hal.archives-ouvertes.fr/hal-00384731/en/.
[18]
M.-J. Martinez, C. Lavergne, C. Trottier.
A mixture model-based approach to the clustering of exponential repeated data, in: Journal of Multivariate Analysis, 2009, vol. 100, no 9, p. 1938-1951.
[19]
B. Scherrer, M. Dojat, F. Forbes, C. Garbay.
Agentification of Markov model-based segmentation: application to magnetic resonance brain scans., in: Artif Intell Med, 2009, vol. 46, p. 81-95
http://www.hal.inserm.fr/inserm-00381395/en/.
[20]
B. Scherrer, F. Forbes, C. Garbay, M. Dojat.
Distributed Local MRF Models for Tissue and Structure Brain Segmentation., in: IEEE Trans Med Imaging, 2009, vol. 28, p. 1296-1307
http://www.hal.inserm.fr/inserm-00402265/en/.
[21]
M. Vignes, F. Forbes.
Gene clustering via integrated Markov models combining individual and pairwise features, in: IEEE-ACM Trans. Comput. Biol. Bioinform., April 2009, vol. 6, no 2, p. 260–270.

Articles in National Peer-Reviewed Journal

[22]
J. Blanchet, F. Forbes, S. Chopart, L. Azizi.
Le logiciel SpaCEM3 pour la classification de données complexes, in: Rev. Modulad, June 2009, vol. 40, p. 147–166.
[23]
C. Bouveyron, S. Girard.
Classification supervisée et non supervisée des données de grande dimension, in: La Revue de Modulad, 2009, vol. 40, p. 81-102
http://hal.archives-ouvertes.fr/hal-00394327/en/.

International Peer-Reviewed Conference/Proceedings

[24]
C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes, S. Girard.
Machine learning techniques for the inversion of planetary hyperspectrals images, in: 1st IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, august 2009.
[25]
C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes, S. Girard.
Support vectors machines regression for estimation of Mars surface physical properties, in: 17th European Symposium on Artificial Neural Networks, Bruges, Belgique, april 2009, p. 195–200.
[26]
C. Bouveyron, S. Girard, M. Olteanu.
Supervised classification of categorical data with uncertain labels for DNA barcoding, in: 17th European Symposium on Artificial Neural Networks, Belgique Bruges, april 2009, p. 29-34
http://hal.archives-ouvertes.fr/hal-00407834/en/.
[27]
A. Daouia, L. Gardes, S. Girard, A. Lekina.
Extreme level curves of heavy-tailed distributions, in: 6th International Conference on Extreme Value Analysis, Fort Collins, USA, june 2009.
[28]
M. Fauvel, J. Chanussot, J. Atli Benediktsson.
Kernel Principal Component Analysis for the construction of the extended morphological profile, in: Proceedings of the IEEE International Geoscience And Remote Sensing Symposium 2009, IGARSS 2009 IEEE International Geoscience And Remote Sensing Symposium 2009, IGARSS 2009, South Africa, 2009, 2009 p
http://hal.archives-ouvertes.fr/hal-00372304/en/.
[29]
F. Forbes, W. Pieczynski.
New trends in Markov models and related learning to restore data, in: IEEE Conference on Machine Learning and Signal Processing, MLSP 09, September, 2009, Grenoble, France, 2009.
[30]
L. Gardes, S. Girard, A. Guillou.
A unified statistical model for Pareto and Weibull tail distributions, in: 6th International Conference on Extreme Value Analysis, Fort Collins, USA, june 2009.
[31]
P. Loiseau, P. Gonçalves, S. Girard, F. Forbes, P. Primet Vicat-Blanc.
Maximum likelihood estimation of the flow size distribution tail index from sampled packet data, in: SIGMETRICS–Joint International Conference on Measurement and Modeling of Computer Systems, Seattle, USA, june 2009.
[32]
B. Scherrer, F. Forbes, M. Dojat.
A conditional random field approach for coupling local registration with robust tissue and structure segmentation, in: 12th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2009, September, 2009, Londres, Royaume-Uni, 2009.

Workshops without Proceedings

[33]
C. Bernard-Michel, L. Gardes, S. Girard, G. Molinié.
Spatial analysis of extreme rainfalls in the Cévennes-Vivarais region, in: Spatial Extremes, Theory and Applications, Lisbonne, Portugal, april 2009.
[34]
L. Gardes, S. Girard, A. Lekina.
Estimation non-paramétrique des quantiles extrêmes conditionnels, in: 41èmes Journées de Statistique, SFdS, Bordeaux, France Bordeaux, France, may 2009
http://hal.inria.fr/inria-00386572/en/.
[35]
J. Hinde, S. de Freitas, M.-J. Martinez, C. Demetrio.
Random effects in cumulative mortality models, in: 2nd Workshop of the ERCIM Working Group on Computing and Statistics, Limassol,Cyprus, october 2009.

Scientific Books (or Scientific Book chapters)

[36]
B. Waske, M. Fauvel, J. Chanussot, J. Atli Benediktsson.
Machine learning techniques in remote sensing data analysis, in: Kernel methods for Remote Sensing Data Analysis, Edited by Gustavo Camps-Valls and Lorenzo Bruzzone (John Wiley and Sons), 2009.

Internal Reports

[37]
V. Ciriza, L. Donini, J.-B. Durand, S. Girard.
User-friendly power management algorithms, Xerox/INRIA, 2009
http://hal.archives-ouvertes.fr/hal-00412509/en/, Technical report.
[38]
A. Daouia, L. Gardes, S. Girard.
Large sample approximation of the distribution for smooth monotone frontier estimation, Xerox/INRIA, 2009
http://hal.archives-ouvertes.fr/hal-00409447/en/, Technical report.
[39]
A. Daouia, L. Gardes, S. Girard, A. Lekina.
Kernel estimators of extreme level curves, GREMAQ/INRIA, 2009
http://hal.inria.fr/inria-00393588/en/, Technical report.
[40]
L. Gardes, S. Girard.
Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels, LJK/INRIA, 2009
http://hal.archives-ouvertes.fr/hal-00371757/en/, Technical report.
[41]
R. P. Horaud, F. Forbes, M. Yguel, G. Dewaele, J. Zhang.
Rigid and Articulated Point Registration with Expectation Conditional Maximization, INRIA, November 2009, no RR-7114, Rapport de recherche.
[42]
V. Khalidov, F. Forbes, R. P. Horaud.
Conjugate Mixture Models for Clustering Multimodal Data, INRIA, November 2009, no RR-7117, Rapport de recherche.
[43]
R. Narasimha, É. Arnaud, F. Forbes, R. P. Horaud.
A Joint Framework for Disparity and Surface Normal Estimation, INRIA, October 2009, no RR-7090, Rapport de recherche.

References in notes

[44]
J. Ashburner, K. J. Friston.
Unified Segmentation, in: NeuroImage, 2005, vol. 26, p. 839–851.
[45]
C. Biernacki, G. Celeux, G. Govaert, F. Langrognet.
Model-Based Cluster and Discriminant Analysis with the MIXMOD Software, in: Computational Statistics and Data Analysis, 2006, vol. 51, no 2, p. 587–600.
[46]
C. Bouveyron.
Modélisation et classification des données de grande dimension. Application à l'analyse d'images, Université Grenoble 1, septembre 2006
http://tel.archives-ouvertes.fr/tel-00109047, Ph. D. Thesis.
[47]
C. Chen, F. Forbes, O. Francois.
FASTRUCT: Model-based clustering made faster, in: Molecular Ecology Notes, 2006, vol. 6, p. 980–983.
[48]
V. Ciriza, L. Donini, J.-B. Durand, S. Girard.
User-friendly power management algorithms, 2009
http://hal.archives-ouvertes.fr/hal-00412509/fr/.
[49]
A. Daouia, L. Gardes, S. Girard, A. Lekina.
Kernel estimators of extreme level curves, 2009
http://hal.inria.fr/inria-00393588/fr/.
[50]
P. Embrechts, C. Klüppelberg, T. Mikosh.
Modelling Extremal Events, Applications of Mathematics, Springer-Verlag, 1997, vol. 33.
[51]
F. Ferraty, P. Vieu.
Nonparametric Functional Data Analysis: Theory and Practice, Springer Series in Statistics, Springer, 2006.
[52]
O. Francois, S. Ancelet, G. Guillot.
Bayesian clustering using Hidden Markov Random Fields in spatial genetics, in: Genetics, 2006, p. 805–816.
[53]
L. Gardes.
Estimation d'une fonction quantile extrême, Université Montpellier 2, october 2003, Ph. D. Thesis.
[54]
L. Gardes, S. Girard.
Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels, LJK/INRIA, 2009
http://hal.archives-ouvertes.fr/hal-00371757/fr/, Technical report.
[55]
L. Gardes, S. Girard, A. Guillou.
Weibull tail-distributions revisited: a new look at some tail estimators, 2009
http://hal.archives-ouvertes.fr/hal-00340661/fr/.
[56]
L. Gardes, S. Girard, A. Lekina.
Functional nonparametric estimation of conditional extreme quantiles, in: Journal of Multivariate Analysis, 2010, vol. 101, p. 419–433.
[57]
M. Garrido.
Modélisation des événements rares et estimation des quantiles extrêmes, méthodes de sélection de modèles pour les queues de distribution, Université Grenoble 1, juin 2002
http://mistis.inrialpes.fr/people/girard/Fichiers/theseGarrido.pdf, Ph. D. Thesis.
[58]
S. Girard.
Construction et apprentissage statistique de modèles auto-associatifs non-linéaires. Application à l'identification d'objets déformables en radiographie. Modélisation et classification, Université de Cery-Pontoise, octobre 1996, Ph. D. Thesis.
[59]
K. Li.
Sliced inverse regression for dimension reduction, in: Journal of the American Statistical Association, 1991, vol. 86, p. 316–327.
[60]
S. Makni, J. Idier, T. Vincent, B. Thirion, G. Dehaene-Lambertz, P. Ciuciu.
A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI., in: NeuroImage, 07 2008, vol. 41, no 3, p. 941-69
http://hal-cea.archives-ouvertes.fr/cea-00333624/en/.
[61]
R. Nelsen.
An introduction to copulas, Lecture Notes in Statistics, Springer-Verlag, New-York, 1999, vol. 139.
[62]
K. Pohl, J. Fisher, E. Grimson, R. Kikinis, W. Wells.
A Bayesian model for joint segmentation and registration, in: NeuroImage, 2006, vol. 31, no 1, p. 228-239.
[63]
J. Pritchard, M. Stephens, P. Donnelly.
Inference of Population Structure Using Multilocus Genotype Data, in: Genetics, 2000, vol. 155, p. 945–959.
[64]
B. Scherrer, F. Forbes, M. Dojat, C. Garbay.
Fully Bayesian Joint Model for MR Brain Scan Tissue and Structure Segmentation. Received the Young Investigator Award in Segmentation, in: MICCAI 2008, New-York, USA, 2008, p. 1066-74.
[65]
M. Seghier, A. Ramlackhansingh, J. Crinion, A. Leff, C. J. Price.
Lesion identification using unified segmentation-normalisation models and fuzzy clustering, in: Neuroimage, 2008, vol. 41, p. 1253-1266.
[66]
K. Van Leemput, F. Maes, D. Vandermeulen, A. Colchester, P. Suetens.
Automated segmentation of Multiple Sclerosis Lesions by model outlier detection, in: IEEE trans. Med. Ima., 2001, vol. 20, no 8, p. 677-688.

previous
next