Bibliography
Major publications by the team in recent years
- [1]
- C. Amblard, S. Girard.
Estimation procedures for a semiparametric family of bivariate copulas, in: Journal of Computational and Graphical Statistics, 2005, vol. 14, no 2, p. 1–15. - [2]
- J. Blanchet, F. Forbes.
Triplet Markov fields for the supervised classification of complex structure data, in: IEEE trans. on Pattern Analyis and Machine Intelligence, 2008, vol. 30(6), p. 1055–1067. - [3]
- C. Bouveyron, S. Girard, C. Schmid.
High dimensional data clustering, in: Computational Statistics and Data Analysis, 2007, vol. 52, p. 502–519. - [4]
- C. Bouveyron, S. Girard, C. Schmid.
High dimensional discriminant analysis, in: Communication in Statistics - Theory and Methods, 2007, vol. 36, no 14. - [5]
- G. Celeux, S. Chrétien, F. Forbes, A. Mkhadri.
A Component-wise EM Algorithm for Mixtures, in: Journal of Computational and Graphical Statistics, 2001, vol. 10, p. 699–712. - [6]
- G. Celeux, F. Forbes, N. Peyrard.
EM procedures using mean field-like approximations for Markov model-based image segmentation, in: Pattern Recognition, 2003, vol. 36, no 1, p. 131-144. - [7]
- F. Forbes, G. Fort.
Combining Monte Carlo and Mean field like methods for inference in hidden Markov Random Fields, in: IEEE trans. PAMI, 2007, vol. 16, no 3, p. 824-837. - [8]
- F. Forbes, N. Peyrard.
Hidden Markov Random Field Model Selection Criteria based on Mean Field-like Approximations, in: in IEEE trans. PAMI, August 2003, vol. 25(9), p. 1089–1101. - [9]
- L. Gardes, S. Girard.
A moving window approach for nonparametric estimation of the conditional tail index, in: Journal of Multivariate Analysis, 2008, vol. 99, p. 2368–2388. - [10]
- S. Girard.
A Hill type estimate of the Weibull tail-coefficient, in: Communication in Statistics - Theory and Methods, 2004, vol. 33, no 2, p. 205–234.
Publications of the year
Articles in International Peer-Reviewed Journal
- [11]
- C. Amblard, S. Girard.
A new extension of bivariate FGM copulas, in: Metrika, 2009, vol. 70, p. 1-17
http://hal.inria.fr/inria-00134433/en/. - [12]
- C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes, S. Girard.
Retrieval of Mars surface physical properties from Omega hyperspectral images using Regularized Sliced Inverse Regression, in: Journal of Geophysical Research - Planets, 2009, vol. 114
http://hal.archives-ouvertes.fr/hal-00383143/en/, E06005. - [13]
- C. Bernard-Michel, L. Gardes, S. Girard.
Gaussian Regularized Sliced Inverse Regression, in: Statistics and Computing, 2009, vol. 19, p. 85-98
http://hal.inria.fr/inria-00180458/en/. - [14]
- C. Bouveyron, S. Girard.
Robust supervised classification with mixture models: Learning from data with uncertain labels, in: Pattern Recognition, 2009, vol. 42, no 11, p. 2649-2658
http://hal.archives-ouvertes.fr/hal-00325263/en/. - [15]
- B. Durand, M.-J. Martinez, D. Calavas, C. Ducrot.
Comparison of strategies for substantiating freedom from scrapie in a sheep flock, in: BMC Veterinary Research, 2009, no 5:16. - [16]
- M. Fauvel, J. Atli Benediktsson, J. Chanussot.
Kernel principal component analysis for the classification of hyperspectral remote-sensing data over urban areas, in: EURASIP Journal on Advances in Signal Processing, 2009, Vol. 2009 p
http://hal.archives-ouvertes.fr/hal-00372296/en/. - [17]
- S. Girard, P. Jacob.
Frontier estimation with local polynomials and high power-transformed data, in: Journal of Multivariate Analysis, 2009, vol. 100, p. 1691-1705
http://hal.archives-ouvertes.fr/hal-00384731/en/. - [18]
- M.-J. Martinez, C. Lavergne, C. Trottier.
A mixture model-based approach to the clustering of exponential repeated data, in: Journal of Multivariate Analysis, 2009, vol. 100, no 9, p. 1938-1951. - [19]
- B. Scherrer, M. Dojat, F. Forbes, C. Garbay.
Agentification of Markov model-based segmentation: application to magnetic resonance brain scans., in: Artif Intell Med, 2009, vol. 46, p. 81-95
http://www.hal.inserm.fr/inserm-00381395/en/. - [20]
- B. Scherrer, F. Forbes, C. Garbay, M. Dojat.
Distributed Local MRF Models for Tissue and Structure Brain Segmentation., in: IEEE Trans Med Imaging, 2009, vol. 28, p. 1296-1307
http://www.hal.inserm.fr/inserm-00402265/en/. - [21]
- M. Vignes, F. Forbes.
Gene clustering via integrated Markov models combining individual and pairwise features, in: IEEE-ACM Trans. Comput. Biol. Bioinform., April 2009, vol. 6, no 2, p. 260–270.
Articles in National Peer-Reviewed Journal
- [22]
- J. Blanchet, F. Forbes, S. Chopart, L. Azizi.
Le logiciel SpaCEM3 pour la classification de données complexes, in: Rev. Modulad, June 2009, vol. 40, p. 147–166. - [23]
- C. Bouveyron, S. Girard.
Classification supervisée et non supervisée des données de grande dimension, in: La Revue de Modulad, 2009, vol. 40, p. 81-102
http://hal.archives-ouvertes.fr/hal-00394327/en/.
International Peer-Reviewed Conference/Proceedings
- [24]
- C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes, S. Girard.
Machine learning techniques for the inversion of planetary hyperspectrals images, in: 1st IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, august 2009. - [25]
- C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes, S. Girard.
Support vectors machines regression for estimation of Mars surface physical properties, in: 17th European Symposium on Artificial Neural Networks, Bruges, Belgique, april 2009, p. 195–200. - [26]
- C. Bouveyron, S. Girard, M. Olteanu.
Supervised classification of categorical data with uncertain labels for DNA barcoding, in: 17th European Symposium on Artificial Neural Networks, Belgique Bruges, april 2009, p. 29-34
http://hal.archives-ouvertes.fr/hal-00407834/en/. - [27]
- A. Daouia, L. Gardes, S. Girard, A. Lekina.
Extreme level curves of heavy-tailed distributions, in: 6th International Conference on Extreme Value Analysis, Fort Collins, USA, june 2009. - [28]
- M. Fauvel, J. Chanussot, J. Atli Benediktsson.
Kernel Principal Component Analysis for the construction of the extended morphological profile, in: Proceedings of the IEEE International Geoscience And Remote Sensing Symposium 2009, IGARSS 2009 IEEE International Geoscience And Remote Sensing Symposium 2009, IGARSS 2009, South Africa, 2009, 2009 p
http://hal.archives-ouvertes.fr/hal-00372304/en/. - [29]
- F. Forbes, W. Pieczynski.
New trends in Markov models and related learning to restore data, in: IEEE Conference on Machine Learning and Signal Processing, MLSP 09, September, 2009, Grenoble, France, 2009. - [30]
- L. Gardes, S. Girard, A. Guillou.
A unified statistical model for Pareto and Weibull tail distributions, in: 6th International Conference on Extreme Value Analysis, Fort Collins, USA, june 2009. - [31]
- P. Loiseau, P. Gonçalves, S. Girard, F. Forbes, P. Primet Vicat-Blanc.
Maximum likelihood estimation of the flow size distribution tail index from sampled packet data, in: SIGMETRICS–Joint International Conference on Measurement and Modeling of Computer Systems, Seattle, USA, june 2009. - [32]
- B. Scherrer, F. Forbes, M. Dojat.
A conditional random field approach for coupling local registration with robust tissue and structure segmentation, in: 12th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2009, September, 2009, Londres, Royaume-Uni, 2009.
Workshops without Proceedings
- [33]
- C. Bernard-Michel, L. Gardes, S. Girard, G. Molinié.
Spatial analysis of extreme rainfalls in the Cévennes-Vivarais region, in: Spatial Extremes, Theory and Applications, Lisbonne, Portugal, april 2009. - [34]
- L. Gardes, S. Girard, A. Lekina.
Estimation non-paramétrique des quantiles extrêmes conditionnels, in: 41èmes Journées de Statistique, SFdS, Bordeaux, France Bordeaux, France, may 2009
http://hal.inria.fr/inria-00386572/en/. - [35]
- J. Hinde, S. de Freitas, M.-J. Martinez, C. Demetrio.
Random effects in cumulative mortality models, in: 2nd Workshop of the ERCIM Working Group on Computing and Statistics, Limassol,Cyprus, october 2009.
Scientific Books (or Scientific Book chapters)
- [36]
- B. Waske, M. Fauvel, J. Chanussot, J. Atli Benediktsson.
Machine learning techniques in remote sensing data analysis, in: Kernel methods for Remote Sensing Data Analysis, Edited by Gustavo Camps-Valls and Lorenzo Bruzzone (John Wiley and Sons), 2009.
Internal Reports
- [37]
- V. Ciriza, L. Donini, J.-B. Durand, S. Girard.
User-friendly power management algorithms, Xerox/INRIA, 2009
http://hal.archives-ouvertes.fr/hal-00412509/en/, Technical report. - [38]
- A. Daouia, L. Gardes, S. Girard.
Large sample approximation of the distribution for smooth monotone frontier estimation, Xerox/INRIA, 2009
http://hal.archives-ouvertes.fr/hal-00409447/en/, Technical report. - [39]
- A. Daouia, L. Gardes, S. Girard, A. Lekina.
Kernel estimators of extreme level curves, GREMAQ/INRIA, 2009
http://hal.inria.fr/inria-00393588/en/, Technical report. - [40]
- L. Gardes, S. Girard.
Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels, LJK/INRIA, 2009
http://hal.archives-ouvertes.fr/hal-00371757/en/, Technical report. - [41]
- R. P. Horaud, F. Forbes, M. Yguel, G. Dewaele, J. Zhang.
Rigid and Articulated Point Registration with Expectation Conditional Maximization, INRIA, November 2009, no RR-7114, Rapport de recherche. - [42]
- V. Khalidov, F. Forbes, R. P. Horaud.
Conjugate Mixture Models for Clustering Multimodal Data, INRIA, November 2009, no RR-7117, Rapport de recherche. - [43]
- R. Narasimha, É. Arnaud, F. Forbes, R. P. Horaud.
A Joint Framework for Disparity and Surface Normal Estimation, INRIA, October 2009, no RR-7090, Rapport de recherche.
References in notes
- [44]
- J. Ashburner, K. J. Friston.
Unified Segmentation, in: NeuroImage, 2005, vol. 26, p. 839–851. - [45]
- C. Biernacki, G. Celeux, G. Govaert, F. Langrognet.
Model-Based Cluster and Discriminant Analysis with the MIXMOD Software, in: Computational Statistics and Data Analysis, 2006, vol. 51, no 2, p. 587–600. - [46]
- C. Bouveyron.
Modélisation et classification des données de grande dimension. Application à l'analyse d'images, Université Grenoble 1, septembre 2006
http://tel.archives-ouvertes.fr/tel-00109047, Ph. D. Thesis. - [47]
- C. Chen, F. Forbes, O. Francois.
FASTRUCT: Model-based clustering made faster, in: Molecular Ecology Notes, 2006, vol. 6, p. 980–983. - [48]
- V. Ciriza, L. Donini, J.-B. Durand, S. Girard.
User-friendly power management algorithms, 2009
http://hal.archives-ouvertes.fr/hal-00412509/fr/. - [49]
- A. Daouia, L. Gardes, S. Girard, A. Lekina.
Kernel estimators of extreme level curves, 2009
http://hal.inria.fr/inria-00393588/fr/. - [50]
- P. Embrechts, C. Klüppelberg, T. Mikosh.
Modelling Extremal Events, Applications of Mathematics, Springer-Verlag, 1997, vol. 33. - [51]
- F. Ferraty, P. Vieu.
Nonparametric Functional Data Analysis: Theory and Practice, Springer Series in Statistics, Springer, 2006. - [52]
- O. Francois, S. Ancelet, G. Guillot.
Bayesian clustering using Hidden Markov Random Fields in spatial genetics, in: Genetics, 2006, p. 805–816. - [53]
- L. Gardes.
Estimation d'une fonction quantile extrême, Université Montpellier 2, october 2003, Ph. D. Thesis. - [54]
- L. Gardes, S. Girard.
Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels, LJK/INRIA, 2009
http://hal.archives-ouvertes.fr/hal-00371757/fr/, Technical report. - [55]
- L. Gardes, S. Girard, A. Guillou.
Weibull tail-distributions revisited: a new look at some tail estimators, 2009
http://hal.archives-ouvertes.fr/hal-00340661/fr/. - [56]
- L. Gardes, S. Girard, A. Lekina.
Functional nonparametric estimation of conditional extreme quantiles, in: Journal of Multivariate Analysis, 2010, vol. 101, p. 419–433. - [57]
- M. Garrido.
Modélisation des événements rares et estimation des quantiles extrêmes, méthodes de sélection de modèles pour les queues de distribution, Université Grenoble 1, juin 2002
http://mistis.inrialpes.fr/people/girard/Fichiers/theseGarrido.pdf, Ph. D. Thesis. - [58]
- S. Girard.
Construction et apprentissage statistique de modèles auto-associatifs non-linéaires. Application à l'identification d'objets déformables en radiographie. Modélisation et classification, Université de Cery-Pontoise, octobre 1996, Ph. D. Thesis. - [59]
- K. Li.
Sliced inverse regression for dimension reduction, in: Journal of the American Statistical Association, 1991, vol. 86, p. 316–327. - [60]
- S. Makni, J. Idier, T. Vincent, B. Thirion, G. Dehaene-Lambertz, P. Ciuciu.
A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI., in: NeuroImage, 07 2008, vol. 41, no 3, p. 941-69
http://hal-cea.archives-ouvertes.fr/cea-00333624/en/. - [61]
- R. Nelsen.
An introduction to copulas, Lecture Notes in Statistics, Springer-Verlag, New-York, 1999, vol. 139. - [62]
- K. Pohl, J. Fisher, E. Grimson, R. Kikinis, W. Wells.
A Bayesian model for joint segmentation and registration, in: NeuroImage, 2006, vol. 31, no 1, p. 228-239. - [63]
- J. Pritchard, M. Stephens, P. Donnelly.
Inference of Population Structure Using Multilocus Genotype Data, in: Genetics, 2000, vol. 155, p. 945–959. - [64]
- B. Scherrer, F. Forbes, M. Dojat, C. Garbay.
Fully Bayesian Joint Model for MR Brain Scan Tissue and Structure Segmentation. Received the Young Investigator Award in Segmentation, in: MICCAI 2008, New-York, USA, 2008, p. 1066-74. - [65]
- M. Seghier, A. Ramlackhansingh, J. Crinion, A. Leff, C. J. Price.
Lesion identification using unified segmentation-normalisation models and fuzzy clustering, in: Neuroimage, 2008, vol. 41, p. 1253-1266. - [66]
- K. Van Leemput, F. Maes, D. Vandermeulen, A. Colchester, P. Suetens.
Automated segmentation of Multiple Sclerosis Lesions by model outlier detection, in: IEEE trans. Med. Ima., 2001, vol. 20, no 8, p. 677-688.