Section: Application Domains
Large systems simulation
As the size of the systems one wants to study increases, more efficient numerical techniques need to be resorted to. In computational chemistry, the typical scaling law for the complexity of computations with respect to the size of the system under study is N^{3} , N being for instance the number of electrons. The Holy Grail in this respect is to reach a linear scaling, so as to make possible simulations of systems of practical interest in biology or material science. Efforts in this direction must address a large variety of questions such as

how to improve the nonlinear iterations that are the basis of any ab initio models for computational chemistry?

how to more efficiently solve the inner loop which most often consists in the solution procedure for the linear problem (with frozen nonlinearity)?

how to design a sufficiently small variational space, whose dimension is kept limited while the size of the system increases?
An alternative strategy to reduce the complexity of ab initio computations is to try to couple different models at different scales. Such a mixed strategy can be either a sequential one or a parallel one, in the sense that

in the former, the results of the model at the lower scale are simply used to evaluate some parameters that are inserted in the model for the larger scale: one example is the parameterized classical molecular dynamics, which makes use of force fields that are fitted to calculations at the quantum level;

while in the latter, the model at the lower scale is concurrently coupled to the model at the larger scale: an instance of such a strategy is the so called QM/MM coupling (standing for Quantum Mechanics/Molecular Mechanics coupling) where some part of the system (typically the reactive site of a protein) is modeled with quantum models, that therefore accounts for the change in the electronic structure and for the modification of chemical bonds, while the rest of the system (typically the inert part of a protein) is coarse grained and more crudely modeled by classical mechanics.
The coupling of different scales can even go up to the macroscopic scale, with methods that couple a microscopic description of matter, or at least a mesoscopic one, with the equations of continuum mechanics at the macroscopic level.