Overall Objectives
Scientific Foundations
Application Domains
New Results
Other Grants and Activities

Section: Scientific Foundations


Another crucial issue for biological systems is the question of delays. Delays, in control theory, are traditionally discrete (more exactly, the delays are lags) whereas in biology they usually are continuous and distributed. For example, the entry of a parasite into a cell initiates a cascade of events that ultimately leads to the production of new parasites. Even in a homogeneous population of cells, it is unreasonable to expect that the time to complete all these processes is the same for every cell. If we furthermore consider differences in cell activation state, metabolism, position in the cell cycle, pre-existing stores of nucleotides and other precursors needed for the reproduction of parasites, along with genetic variations in the parasite population, such variations in infection delay times becomes a near certainty. The rationale for studying continuous delays are supported by such considerations. In the literature on dynamical systems, we find a wealth of theorems dealing with delay differential equations. However they are difficult to apply. Control theory approaches (interconnections of systems), is a mean to study the influence of continuous delays on the stability of such systems. We have obtained some results in this direction [5] .


Logo Inria