Team Magique-3D

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Contracts and Grants with Industry
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
M. Amara, R. Djellouli, C. Farhat.
Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems, in: to SIAM Journal on Numerical Analysis, 2008, In press.
[2]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
Three-dimensional approximate local DtN boundary conditions for prolate spheroid boundaries, in: Journal of Computational and Applied Mathematics, 2008
http://hal.inria.fr/inria-00338506/en/.
[3]
H. Barucq, M. Fontes.
Well-posedness and exponential stability of Maxwell-like systems coupled with strongly absorbing layers, in: J. Math. Pures Appl. (9), 2007, vol. 87, no 3, p. 253–273.
[4]
L. Carington, D. Komatitsch, M. Laurenzano, M. Tikir, D. Michéa, N. Le Goff, A. Snavely, J. Tromp.
High-frequency simulations of global seismic wave propagation using SPECFEM3D_GLOBE on 62 thousand processor cores, in: Proceedings of the ACM/IEEE Supercomputing SC'2008 conference, 2008, p. 1-11, Article #60, Gordon Bell Prize finalist article.
[5]
J. Diaz, M. J. Grote.
Energy Conserving Explicit Local Time-Stepping for Second-Order Wave Equations, in: SIAM Journal on Scientific Computing, 2009, vol. 31, no 3, p. 1985-2014
http://hal.inria.fr/inria-00409233/en/.
[6]
L. Dubois, K. L. Feigl, D. Komatitsch, T. Árnadóttir, F. Sigmundsson.
Three-dimensional mechanical models for the June 2000 earthquake sequence in the south Iceland seismic zone, in: Tectonophysics, 2008, vol. 457, p. 12-29.
[7]
A. Ezziani, P. Joly.
Local time stepping and discontinuous Galerkin methods for symmetric first order hyperbolic systems, in: Journal of Computational and Applied Mathematics, 2008
http://hal.inria.fr/inria-00339912/en/.
[8]
D. Komatitsch, J. Labarta, D. Michéa.
A simulation of seismic wave propagation at high resolution in the inner core of the Earth on 2166 processors of MareNostrum, in: Lecture Notes in Computer Science, 2008, vol. 5336, p. 364-377.
[9]
S.-J. Lee, H. W. Chen, Q. Liu, D. Komatitsch, B.-S. Huang, J. Tromp.
Three-Dimensional Simulations of Seismic Wave Propagation in the Taipei Basin with Realistic Topography Based upon the Spectral-Element Method, in: Bull. Seismol. Soc. Am., 2008, vol. 98, no 1, p. 253-264.
[10]
R. Martin, D. Komatitsch, C. Blitz, N. Le Goff.
Simulation of seismic wave propagation in an asteroid based upon an unstructured MPI spectral-element method: blocking and non-blocking communication strategies, in: Lecture notes in computer science, 2008
http://hal.inria.fr/inria-00339890/en/.
[11]
R. Martin, D. Komatitsch, A. Ezziani.
An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation in poroelastic media, in: Geophysics, 2008, vol. 73, no 5, p. T51-T61.
[12]
R. Martin, R. Zenit.
Heat transfer resulting from the interaction of a vortex pair with a heated wall, in: Journal of Heat Transfer, 2008, vol. 130, 130 p.
[13]
J. Tromp, D. Komatitsch, Q. Liu.
Spectral-Element and Adjoint Methods in Seismology, in: Communications in Computational Physics, 2008, vol. 3, no 1, p. 1-32.
[14]
S. Tsuboi, D. Komatitsch, C. Ji, J. Tromp.
Computations of global seismic wave propagation in three-dimensional earth models, in: Lecture Notes in Computer Science, 2008, vol. 4759, p. 434-443.

Publications of the year

Doctoral Dissertations and Habilitation Theses

[15]
C. Baldassari.
Modélisation et simulation numérique pour la migration terrestre par équation d'ondes, Université de Pau et des Pays de l'Adour, 2009, Ph. D. Thesis.
[16]
C. Blitz.
Modélidation de la propagation des ondes sismiques et des ejecta dans les astéroïdes: application à l'érosion des cratères de l'astéroïde 433-Eros, Institut de physique du globe de paris - IPGP, 04 2009
http://tel.archives-ouvertes.fr/tel-00441253/en/, Ph. D. Thesis.
[17]
M. Grigoroscuta-Strugaru.
Sur la résolution numérique des problèmes de Helmholtz, Université de Pau et des Pays de l'Adour, 2009, Ph. D. Thesis.
[18]
R. Madec.
Méthode des éléments spectraux pour la propagation d'ondes sismiques en milieu géologique fluide-solide avec pas de temps locaux et couches absorbantes parfaitement adaptées C-PML, Université de Pau et des Pays de l'Adour, 2009, Ph. D. Thesis.
[19]
R. Martin.
Optimisation et Calcul Haute Performance pour la Géophysique, Université de Pau et des Pays de l'Adour, 2009, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[20]
H. Barucq, J. Diaz, M. Tlemcani.
New absorbing layers conditions for short water waves, in: Journal of Computational Physics, 2010, vol. 229, p. 58–72
http://hal.inria.fr/inria-00418317/en/.
[21]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
Performance assessment of a new class of local absorbing boundary conditions for elliptical- and prolate spheroidal-shaped boundaries, in: Applied Numerical Mathematics, 2009, vol. 59, no 7, p. 1467-1498
http://hal.inria.fr/inria-00338494/en/.
[22]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
Three-dimensional approximate local DtN boundary conditions for prolate spheroid boundaries, in: Journal of Computational and Applied Mathematics, 2009
http://hal.inria.fr/inria-00338506/en/.
[23]
C. Blitz, P. Lognonné, D. Komatitsch, D. Baratoux.
Effects of ejecta accumulation on the crater population of asteroid 433 Eros, in: Journal of Geophysical Research, 2009, vol. 114, E06006 p
http://hal.inria.fr/inria-00436421/en/.
[24]
D. Capatina, M. Amara, L. Lizaik.
Coupling of Darcy-Forchheimer and compressible Navier-Stokes equations with heat transfer, in: SIAM J. Sci. Comp., 2009, vol. 31, no 2, p. 1470-1499
http://hal.inria.fr/inria-00437566/en/.
[25]
J. Diaz, A. Ezziani.
Analytical solution for waves propagation in heterogeneous acoustic/porous media. Part I: the 2D case, in: Communications in Computational Physics, 2010, vol. 7, no 1, p. 171-194
http://hal.inria.fr/inria-00404224/en/.
[26]
J. Diaz, A. Ezziani.
Analytical solution for waves propagation in heterogeneous acoustic/porous media. Part II: the 3D case, in: Communications in Computational Physics, 2010, vol. 7, no 3, p. 445-472
http://hal.inria.fr/inria-00404228/en/.
[27]
J. Diaz, M. J. Grote.
Energy Conserving Explicit Local Time-Stepping for Second-Order Wave Equations, in: SIAM Journal on Scientific Computing, 2009, vol. 31, no 3, p. 1985-2014
http://hal.inria.fr/inria-00409233/en/.
[28]
G. Dupuy, B. Jobard, S. Guillon, N. Keskes, D. Komatitsch.
Parallel extraction and simplification of large isosurfaces using an extended tandem algorithm, in: Computer-Aided Design, 2009, vol. In Press, Corrected Proof
http://hal.inria.fr/inria-00436423/en/.
[29]
L. Godinho, P. Amado, A. Tadeu, A. Cadena-Isaza, C. Smerzini, F. Sanchez-Sesma, R. Madec, D. Komatitsch.
Numerical simulation of ground rotations along 2D topographical profiles under the incidence of elastic plane waves, in: Bull. Seismol. Soc. Am., 2009, vol. 99, no 2B, p. 1147-1161
http://hal.inria.fr/inria-00436425/en/.
[30]
D. Komatitsch, D. Michéa, G. Erlebacher.
Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA, in: Journal of Parallel and Distributed Computing, 2009, vol. 69, no 5, p. 451-460
http://hal.inria.fr/inria-00436426/en/.
[31]
S.-J. Lee, Y. C. Chan, D. Komatitsch, B.-S. Huang, J. Tromp.
Effects of realistic surface topography on seismic ground motion in the Yangminshan region of Taiwan based upon the spectral-element method and LiDAR DTM, in: Bulletin of the Seismological Society of America, 2009, vol. 99, no 2A, p. 681-693
http://hal.inria.fr/inria-00436427/en/.
[32]
S.-J. Lee, D. Komatitsch, B.-S. Huang, J. Tromp.
Effects of topography on seismic wave propagation: An example from northern Taiwan, in: Bulletin of the Seismological Society of America, 2009, vol. 99, no 1, p. 314-325
http://hal.inria.fr/inria-00436428/en/.
[33]
R. Madec, D. Komatitsch, J. Diaz.
Energy-conserving local time stepping based on high-order finite elements for seismic wave propagation across a fluid-solid interface, in: Computer Modeling in Engineering and Sciences, 2009, vol. 49, no 2, p. 163-189
http://hal.inria.fr/inria-00436429/en/.
[34]
R. Martin, D. Komatitsch.
An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation, in: Geophysical Journal International, 2009, vol. 179, no 1, p. 333-344
http://hal.inria.fr/inria-00436430/en/.

International Peer-Reviewed Conference/Proceedings

[35]
C. Agut, J. Diaz, A. Ezziani.
A New Modified Equation Approach for solving the Wave Equation, in: Proceedings of the Tenth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, 2010, to appear.
[36]
H. Barucq, J. Diaz, V. Duprat.
High Order Absorbing Boundary Conditions for solving the Wave Equation by Discontinuous Galerkin Methods, in: Proceedings of the Tenth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, 2010, to appear.
[37]
T.-M. Laleg-Kirati, E. Crépeau, M. Sorine.
Signal Analysis by Expansion Over the Squared Eigenfunctions of an Associated Schrödinger Operator, in: WAVES, France PAU, 2009
http://hal.inria.fr/inria-00429507/en/.

Internal Reports

[38]
M. Amara, H. Calandra, R. Djellouli, M. Grigoroscuta-Strugaru.
A Modified Discontinuous Galerkin Method for Solving Helmholtz Problems, INRIA, 2009
http://hal.inria.fr/inria-00421584/en/, RR-7050.
[39]
H. Barucq, C. Bekkey, R. Djellouli.
A Multi-Step Procedure for Enriching Limited Two-Dimensional Acoustic Far-Field Pattern Measurements., INRIA, 2009
http://hal.inria.fr/inria-00420644/en/, RR-7048.
[40]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
High frequency analysis of the efficiency of a local approximate DtN2 boundary condition for prolate spheroidal-shaped boundaries, INRIA, 2009
http://hal.inria.fr/inria-00438845/en/, RR-7137.
[41]
T.-M. Laleg-Kirati, C. Médigue, Y. Papelier, F. Cottin, A. Van De Louw.
Validation of a New Method for Stroke Volume Variation Assessment: a Comparaison with the PiCCO Technique., INRIA, 2009
http://hal.archives-ouvertes.fr/inria-00429496/fr/, RR-7172.

References in notes

[42]
X. Antoine.
Fast approximate computation of a time-harmonic scattered field using the on-surface radiation condition method, in: IMA J. Appl. Math, 2001, vol. 66, p. 83–110.
[43]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
Performance assessment of a new class of local absorbing boundary conditions for elliptical- and prolate spheroidal-shaped boundaries, in: Applied Numerical Mathematics, 2008
http://hal.inria.fr/inria-00338494/en/.
[44]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
Three-dimensional approximate local DtN boundary conditions for prolate spheroid boundaries, in: Journal of Computational and Applied Mathematics, 2008
http://hal.inria.fr/inria-00338506/en/.
[45]
A. Bayliss, M. Gunzburger, E. Turkel.
Boundary conditions for the numerical solution of elliptic equations in exterior regions, in: SIAM J. Appl. Math., 1982, vol. 42, p. 430-451.
[46]
J. P. Bérenger.
A Perfectly Matched Layer for the absorption of electromagnetic waves, in: J. Comput. Phys., 1994, vol. 114, p. 185-200.
[47]
J. Bielak, P. Christiano.
On the effective seismic input for non-linear soil-structure interaction systems, in: Earthquake Eng. Struct. Dyn., 1984, vol. 12, p. 107-119.
[48]
E. J. Candès, L. Demanet.
Curvelets and fourier integral operators, Académie des sciences/Éditions scientifiques et médicales, Elsevier, 2003.
[49]
E. J. Candès, L. Demanet, D. Donoho, L. Ying.
Fast discrete curvelet transforms, in: SIAM Multiscale Model. Simul., 2006, vol. 5, p. 861–899.
[50]
E. J. Candès, D. Donoho.
New tight frames of curvelets and optimal representations of objects with c2 singularities, in: Comm.Pure. Appl. Math, 2002, vol. 57, p. 219–266.
[51]
L. Carington, D. Komatitsch, M. Laurenzano, M. Tikir, D. Michéa, N. Le Goff, A. Snavely, J. Tromp.
High-frequency simulations of global seismic wave propagation using SPECFEM3D_GLOBE on 62 thousand processor cores, in: Proceedings of the ACM/IEEE Supercomputing SC'2008 conference, 2008, p. 1-11, Article #60, Gordon Bell Prize finalist article.
[52]
C. Cerjan, D. Kosloff, R. Kosloff, M. Reshef.
A nonreflecting boundary condition for discrete acoustic and elastic wave equation, in: Geophysics, 1985, vol. 50, p. 705-708.
[53]
W. C. Chew, Q. Liu.
Perfectly Matched Layers for elastodynamics: a new absorbing boundary condition, in: J. Comput. Acoust., 1996, vol. 4, no 4, p. 341–359.
[54]
R. Clayton, B. Engquist.
Absorbing boundary conditions for acoustic and elastic wave equations, in: Bull. Seismol. Soc. Am., 1977, vol. 67, p. 1529-1540.
[55]
F. Collino, C. Tsogka.
Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, in: Geophysics, 2001, vol. 66, no 1, p. 294-307.
[56]
D. Colton, R. Kress.
Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, Springer Verlag, 1992, no 93.
[57]
L. Demanet, E. J. Candès, L. Ying.
Fast computation of fourier integral operators, in: SIAM J. Sci. Comput., 2006.
[58]
L. Demanet, L. Ying.
Discrete symbol calculus, to appear.
[59]
J. Diaz, A. Ezziani.
Analytical Solution for Wave Propagation in Stratified Poroelastic Medium. Part I: the 2D Case, INRIA, 2008
http://hal.inria.fr/inria-00305395/en/, RR-6591.
[60]
J. Diaz, A. Ezziani.
Analytical Solution for Wave Propagation in Stratified Poroelastic Medium. Part II: the 3D Case, INRIA, 2008
http://hal.inria.fr/inria-00305891/en/, RR-6596.
[61]
J. Diaz, P. Joly.
Robust high order non-conforming finite element formulation for time domain fluid-structure interaction, in: J. Comput. Acoust., 2005, vol. 13, no 3, p. 403–431.
[62]
L. Dubois, K. L. Feigl, D. Komatitsch, T. Árnadóttir, F. Sigmundsson.
Three-dimensional mechanical models for the June 2000 earthquake sequence in the south Iceland seismic zone, in: Tectonophysics, 2008, vol. 457, p. 12-29.
[63]
B. Engquist, A. Majda.
Absorbing boundary conditions for the numerical simulation of waves, in: Math. Comp., 1977, vol. 31, p. 629-651.
[64]
D. Givoli, J. B. Keller.
Non-reflecting boundary conditions for elastic waves, in: Wave motion, 1990, vol. 12, p. 261-279.
[65]
T. Hagstrom, T. Warburton, D. Givoli.
Radiation boundary conditions for time-dependent waves based on complete plane wave expansions, 2008, in press.
[66]
I. Harari, T. Hughes.
Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, in: Comput. Methods Appl. Mech. Engrg, 1992, vol. 97, p. 103-124.
[67]
R. L. Higdon.
Numerical absorbing boundary conditions for the wave equation, in: Math. Comp., 1987, vol. 49, p. 65–90.
[68]
F. Q. Hu.
A Stable Perfectly Matched Layer for Linearized Euler Equations in Unsplit Physical Variables, in: J. Comput. Phys., 2001, vol. 173, no 2, p. 455-480.
[69]
F. Q. Hu.
On absorbing boundary conditions for linearized euler equations by a perfectly matched layer, in: J. Comput. Phys., 1996, vol. 129, p. 201–219.
[70]
D. Komatitsch, J. Labarta, D. Michéa.
A simulation of seismic wave propagation at high resolution in the inner core of the Earth on 2166 processors of MareNostrum, in: Lecture Notes in Computer Science, 2008, vol. 5336, p. 364-377.
[71]
D. Komatitsch, R. Martin.
An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation, in: Geophysics, 2007, vol. 72, no 5, p. SM155-SM167.
[72]
R. Kress.
Integral equation methods in inverse acoustic and electromagnetic scattering, in: Boundary Integral Formulation for Inverse Analysis, Inghman, Wrobel (editors), Computational Mechanics Publications, Southampton, 1997, p. 67–92.
[73]
R. Kress, W. Rundell.
Inverse obstacle scattering using reduced data, in: SIAM J. Appl. Math., 1999, vol. 59, p. 442–454.
[74]
G. Kriegsmann, A. Taflove, K. Umashankar.
A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach, in: IEEE Trans. Antennas and Propagation, 1987, vol. 35, p. 153-161.
[75]
S.-J. Lee, H. W. Chen, Q. Liu, D. Komatitsch, B.-S. Huang, J. Tromp.
Three-Dimensional Simulations of Seismic Wave Propagation in the Taipei Basin with Realistic Topography Based upon the Spectral-Element Method, in: Bull. Seismol. Soc. Am., 2008, vol. 98, no 1, p. 253-264.
[76]
R. Martin, D. Komatitsch, C. Blitz, N. Le Goff.
Simulation of seismic wave propagation in an asteroid based upon an unstructured MPI spectral-element method: blocking and non-blocking communication strategies, in: Lecture Notes in Computer Science, 2008, vol. 5336, p. 350-363.
[77]
R. Martin, D. Komatitsch, A. Ezziani.
An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation in poroelastic media, in: Geophysics, 2008, vol. 73, no 5, p. T51-T61.
[78]
R. Martin, D. Komatitsch, S. D. Gedney.
A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation, in: Comput. Model. Eng. Sci., 2008, vol. 37, no 3, p. 274-304.
[79]
F. Nataf.
A new approach to perfectly matched layers for the linearized Euler equations, in: J. Comput. Phys., 2006, vol. 214, p. 757–772.
[80]
R. Ochs.
The limited aperture problem of inverse acoustic scattering: Dirichlet boundary conditions, in: SIAM J. Appl. Math., 1987, vol. 47, p. 1320–1341.
[81]
J. Pedersen.
Modular Algorithms for Large-Scale Total Variation Image Deblurring, Technical University of Denmark, 2005, Masters thesis.
[82]
F. Prat.
Analyse du Generalized Screen Propagator, Université de Pau et des Pays de l'Adour, 2005, Ph. D. Thesis.
[83]
R. Reiner, R. Djellouli, I. Harari.
The performance of local absorbing boundary conditions for acoustic scattering from elliptical shapes, in: Compt. Methods Appl. Mech. Engrg, 2006, vol. 195, p. 3622–3665.
[84]
R. Reiner, R. Djellouli.
Improvement of the performance of the BGT2 condition for low frequency acoustic scattering problems, in: Wave Motion, 2006, vol. 43, p. 406–424.
[85]
A.-G. Saint-Guirons.
Construction et analyse de conditions absorbantes de type Dirichlet-to-Neumann pour des frontières ellipsoïdales, Université de Pau et des Pays de l'Adour, 2008, Ph. D. Thesis.
[86]
S. Tsuboi, D. Komatitsch, C. Ji, J. Tromp.
Computations of global seismic wave propagation in three dimensional earth models, in: Lecture Notes in Computer Science, 2008, vol. 4759, p. 434-443.
[87]
A. Zinn.
On an optimization method for full-and limited aperture problem in inverse acoustic scattering for sound-soft obstacle, in: Inverse Problem, 1989, vol. 5, p. 239–253.

previous
next