Bibliography
Major publications by the team in recent years
- [1]
- G. Andreoiu, E. Faou.
Complete asymptotics for shallow shells, in: Asymptotic analysis, 2001, vol. 25, p. 239-270. - [2]
- A. Aubry, P. Chartier.
On improving the convergence of Radau IIA methods when applied to index-2 DAEs, in: SIAM Journal on Numerical Analysis, 1998, vol. 35, no 4, p. 1347-1367. - [3]
- A. Aubry, P. Chartier.
Pseudo-symplectic Runge-Kutta methods, in: BIT, 1998, vol. 38, p. 439–461. - [4]
- F. Castella.
From the von Neumann equation to the Quantum Boltzmann equation in a deterministic framework, in: J. Stat. Phys., 2001, vol. 104–1/2, p. 387–447. - [5]
- F. Castella.
Propagation of space moments in the Vlasov-Poisson Equation and further results, in: Ann. I.H.P., Anal. NonLin., 1999, vol. 16–4, p. 503–533. - [6]
- R. Chan, P. Chartier, A. Murua.
Post-projected Runge-Kutta methods for index-2 differential-algebraic equations, in: Applied Numerical Mathematics, 2002, vol. 42, no 1-3, p. 77-94. - [7]
- M. Dauge, I. Djurdjevic, E. Faou, A. Roessle.
Eigenmode asymptotics in thin elastic plates, in: J. Math. Pures Appl., 1999, vol. 78, p. 925-954. - [8]
- E. Faou.
Elasticity on a thin shell: Formal series solution, in: Asymptotic analysis, 2002, vol. 31, p. 317-361.
Publications of the year
Articles in International Peer-Reviewed Journal
- [9]
- N. B. Abdallah, F. Castella, F. Fendt, F. Méhats.
The strongly confined Schrödinger-Poisson system for the transport of electrons in a nanowire, in: SIAM Journal on Applied Mathematics, 2009, vol. 69, no 4, p. 1162–1173. - [10]
- F. Castella, P. Chartier, S. Descombes, G. Vilmart.
Splitting methods with complex times for parabolic equations, in: BIT Numerical Mathematics, 2009, vol. 49. - [11]
- F. Castella, P. Chartier, E. Faou.
An averaging technique for highly-oscillatory Hamiltonian problems, in: SIAM J. Numer. Anal., 2009, vol. 47, p. 2808-2837. - [12]
- F. Castella, G. Dujardin.
Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting scheme applied to the linear Schrödinger equation, in: Math. Mod. An. Num., 2009, vol. 43, no 4, p. 651–676. - [13]
- F. Castella, G. Dujardin, B. Sericola.
Moments analysis in Markov reward models, in: Methodology and Computing in Applied Probability, 2009. - [14]
- P. Chartier, E. Darrigrand, E. Faou.
A Fast Multipole Method for Geometric Numerical Integrations of Hamiltonian Systems, in: BIT Numerical Analysis, 2009, Under minor revision for BIT Numerical Analysis. - [15]
- P. Chartier, E. Hairer, G. Vilmart.
Algebraic structures of B-series, in: Foundations of Computational Mathematics, 2009, Under minor revision for FOCM. - [16]
- P. Chartier, A. Murua.
An algebraic theory of order, in: M2AN Math. Model. Numer. Anal., 2009, vol. 43. - [17]
- P. Chartier, J.-M. Sanz-Serna, A. Murua.
Higher-order averaging, formal series and numerical integration I: B-series, in: Foundations of Computational Mathematics, 2009, submitted. - [18]
- A. Crudu, A. Debussche, O. Radulescu.
Hybrid stochastic simplifications for multiscale gene networks, in: BMC Systems Biology, 2009, vol. 89, no 3. - [19]
- A. de Bouard, A. Debussche.
Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise, in: Elec. Journal Proba., 2009, vol. 31, no 58. - [20]
- A. Debussche.
Weak approximation of stochastic partial differential equations: the nonlinear case, in: Math. Comp., 2009, to appear. - [21]
- A. Debussche, E. Faou.
Modified energy for split-step methods applied to the linear Schrödinger equation., in: SIAM J. Numer. Anal., 2009, vol. 47, p. 3705–3719. - [22]
- A. Debussche, J. Printems.
Weak order for the discretization of the stochastic heat equation, in: Math. Comp., 2009, vol. 266, no 78, p. 845-863. - [23]
- A. Debussche, J. Vovelle.
Long-time behavior in scalar conservation laws, in: Diff. Int. Eq., 2009, vol. 22, no 3-4, p. 225-238. - [24]
- E. Faou.
Analysis of splitting methods for reaction-diffusion problems using stochastic calculus., in: Math. Comp., 2009, vol. 78, p. 1467–1483. - [25]
- E. Faou, B. Grébert, E. Paturel.
Birkhoff normal form for splitting methods applied to semi linear Hamiltonian PDEs. Part I: Finite dimensional discretization, in: Numer. Math., 2009, to appear. - [26]
- E. Faou, B. Grébert, E. Paturel.
Birkhoff normal form for splitting methods applied to semi linear Hamiltonian PDEs. Part II: Abstract splitting, in: Numer. Math., 2009, to appear. - [27]
- E. Faou, V. Gradinaru, C. Lubich.
Computing semi-classical quantum dynamics with Hagedorn wavepackets, in: SIAM J. Sci. Comp., 2009, vol. 31, p. 3027–3041. - [28]
- E. Faou, T. Lelièvre.
Conservative stochastic differential equations: Mathematical and numerical analysis, in: Math. Comp., 2009, vol. 78, p. 2047–2074.
Other Publications
- [29]
- N. Champagnat, C. Chipot, E. Faou.
A probabilistic approach of high-dimensional least-squares approximations, 2009, Preprint. - [30]
- E. Faou, B. Grébert.
Quasi invariant modified Sobolev norms for semi linear reversible PDEs., 2009, Preprint. - [31]
- E. Faou, B. Grébert.
Resonances in long time integration of semi linear Hamiltonian PDEs., 2009, Preprint.
References in notes
- [32]
- A. Bandrauk, E. Dehghanian, H. Lu.
Complex integration steps in decomposition of quantum exponential evolution operators, in: Chem. Phys. Lett., 2006, vol. 419, p. 346–350. - [33]
- S. Blanes, F. Casas.
On the necessity of negative coefficients for operator splitting schemes of order higher than two, in: Appl. Num. Math., 2005, vol. 54, p. 23–37. - [34]
- J. C. Butcher.
The effective order of Runge-Kutta methods, in: Proceedings of Conference on the Numerical Solution of Differential Equations, J. L. Morris (editor), Lecture Notes in Math., 1969, vol. 109, p. 133–139. - [35]
- J. C. Butcher.
An algebraic theory of integration methods, in: Math. Comput., 1972, vol. 26, p. 79–106. - [36]
- D. Calaque, K. Ebrahimi-Fard, D. Manchon.
Two Hopf algebras of trees interacting, 2008
http://www.citebase.org/abstract?id=oai:arXiv.org:0806.2238. - [37]
- J. E. Chambers.
Symplectic integrators with complex time steps, in: Astron. J., 2003, vol. 126, p. 1119–1126. - [38]
- A. Connes, H. Moscovici.
Hopf Algebras, cyclic cohomology and the transverse index theorem, in: Commun. Math. Phys., 1998, vol. 198. - [39]
- S. Descombes.
Convergence of a splitting method of high order for reaction-diffusion systems, in: Math. Comp., 2001, vol. 70, no 236, p. 1481–1501 (electronic). - [40]
- Z. Gegechkori, J. Rogava, M. Tsiklauri.
High degree precision decomposition method for the evolution problem with an operator under a split form, in: M2AN Math. Model. Numer. Anal., 2002, vol. 36, no 4, p. 693–704. - [41]
- Z. Gegechkori, J. Rogava, M. Tsiklauri.
The fourth order accuracy decomposition scheme for an evolution problem, in: M2AN Math. Model. Numer. Anal., 2004, vol. 38, no 4, p. 707–722. - [42]
- D. Goldman, T. J. Kaper.
N th-order operator splitting schemes and nonreversible systems, in: SIAM J. Numer. Anal., 1996, vol. 33, p. 349–367. - [43]
- E. Hairer.
Geometric integration of ordinary differential equations on manifolds, in: BIT, 2001, vol. 41, p. 996–1007. - [44]
- E. Hairer, C. Lubich, G. Wanner.
Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics 31, Springer, Berlin, 2006. - [45]
- E. Hairer, G. Wanner.
On the Butcher group and general multi-value methods, in: Computing, 1974, vol. 13, p. 1–15. - [46]
- E. Hairer, G. Wanner.
Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics 14, 2, Springer-Verlag, Berlin, 1996. - [47]
- A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, A. Zanna.
Lie-group methods, in: Acta Numerica, 2000, p. 215–365. - [48]
- D. Kreimer.
On the Hopf algebra structure of perturbative quantum field theory, in: Adv. Theor. Math. Phys., 1998, vol. 2, p. 303–334. - [49]
- C. Lubich.
A variational splitting integrator for quantum molecular dynamics, in: Appl. Numer. Math., 2004, vol. 48, p. 355–368. - [50]
- C. Lubich.
On variational approximations in quantum molecular dynamics, in: Math. Comp., 2009, to appear. - [51]
- F. A. Potra, W. C. Rheinboldt.
On the numerical solution of Euler-Lagrange equations, in: Mech. Struct. & Mech., 1991, vol. 19, p. 1–18. - [52]
- H. H. Rosenbrock.
Some general implicit processes for the numerical solution of differential equations, in: Comput. J., 1962, vol. 5, p. 329–330. - [53]
- J. M. Sanz-Serna, M. P. Calvo.
Numerical Hamiltonian Problems, Chapman & Hall, London, 1994. - [54]
- M. Schatzman.
Numerical integration of reaction-diffusion systems, in: Numer. Algorithms, 2002, vol. 31, no 1-4, p. 247–269, Numerical methods for ordinary differential equations (Auckland, 2001). - [55]
- Q. Sheng.
Solving linear partial differential equations by exponential splitting, in: IMA J. Numer. Anal., 1989, vol. 9, p. 199–212. - [56]
- G. J. Sussman, J. Wisdom.
Chaotic evolution of the solar system, in: Science, 1992, vol. 257, p. 56–62.